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1 Algorithm

Algorithm 1: Unsupervised SBIR training
Input:
Sketches Z*; Photos Z7;
Output:
Feature extractor fy
1: repeat
2: Randomly select a mini-batch {17, 17}4
3:  Update feature queue Q, sketch memory bank M* and photo memory bank M?”
4:  Fix feature extractor fp and prototypes U, and
solve for I¥ and I'” as in Equation 1;
5:  Fix [ and ', and update feature extractor fy
and prototypes U according to Equation 6;
6: until Convergence or max training iterations

2 Models for comparison

Unsupervised SBIR  We compare our method with the following unsupervised represen-
tation learning methods: RotNet [4] A self-supervised method that uses rotation prediction
as the pretext task. Here, we perform 4-class (0°, 90°, 180°, 270°) classification. ID [10]
Instance-discrimination for unsupervised representation learning, ignoring image domain.
CDS [6] A self-supervised cross-domain method that performs intra-domain instance dis-
crimination and cross-domain matching for representation learning. GAN [5] Adversarial
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learning is enabled by introducing a 3-layer MLP network as the discriminator to distinguish
extracted features from both domains. While the feature extractor learns with the objective
of removing domain-dependent feature and fooling the discriminator. SWAV [1] An unsuper-
vised feature representation learning algorithm where the cluster assignments for different
variants of the same image are enforced to be consistent. During the training procedure,
sketches and photos are mixed together ignoring the domain differences. DSM [8] A fea-
ture extractor is trained with contrastive loss leveraging matching and non-matching training
edgemap pairs. DSM results are generated by the pre-trained model from the original pa-
per. SWAV [1] + CycleGAN [12] CycleGAN, which achieves unpaired image translation,
is first trained with unlabeled data to convert sketch to color photos. Both real photo data
and images generated from sketch are then used in SWAV. SwWAV [1] + GAN [5] Different
from GAN only method, feature extractor now aims at generating both semantic-aware and
domain-agnostic feature by combining the swapping label prediction and adversarial learn-
ing together.

Zero-shot SBIR  Here, we compare with recent advances in zero-shot SBIR. Note that the
other competitors leverage sketch-photo pairing or class label annotation to train the model
while ours does not. ZSIH [9] Sketch and photo are encoded into binary codes for retrieval.
Sketch-photo heterogeneity is remedied by Kronecker fusion layer, graph convolution and
word embeddings. CVAE [11] Variational autoencoder is employed to model the probability
distribution over images conditioned on its paired sketch feature and generate a latent prior
vector. The sketch feature along with latent prior is then projected onto photo feature space.
SAN [7] A multi-staged generative model is designed to transform sketch feature and ensures
features from different domains are encoded into a common subspace. SEM-PCYC [3]
Cycle-consistency is used to map data from both domains to a shared semantic space while
preserving the ability to translate back to the original modality. Doodle [2] Domain loss and
triplet ranking loss are used to learn a common embedding space where distance between
instance pairs in class-wise alignment are smaller than unaligned pairs.

3 Further Analysis

Influence of memory bank size To investigate the impact of our new memory bank on
optimal transport-aided domain alignment, we adjust the memory bank size and show the
results in Table 1. We can see that: (i) the use of memory banks indeed improves the efficacy
of OT, even with a small size as 480); (ii) retrieval accuracy improves gradually with memory
bank size before saturating at around size 4000.

Table 1: Memory bank size hyperparameter sensitivity. Unsupervised SBIR results on
Sketchy-Extended dataset.

Mem. bank size | Prec@200(%) | mAP@200 (%) | mAP (%)
no 25.60 28.62 20.98
480 27.15 30.32 22.80
960 30.36 33.54 25.59
1920 33.02 35.93 27.64
3840 33.64 36.31 28.17

Influence of prototype number We evaluate whether the number of prototypes has an
effect on the unsupervised cross-domain retrieval. The results in Figure 1 show that (i)
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by matching the prototype number with training category size (125 categories in Sketchy-
Extended dataset), the model performs the best, so taking the class number as a known
condition assists parameter optimization; (ii) slightly increasing the prototype number to
150 still leads to comparable retrieval results.
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Figure 1: Prototype number K hyperparameter sensitivity. Unsupervised SBIR results on
Sketchy-Extended dataset.
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