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Abstract
Convolution blocks serve as local feature extractors and are the key to

success of the neural networks. To make local semantic feature embedding
rather explicit, we reformulate convolution blocks as feature selection according
to the best matching kernel. In this manner, we show that typical ResNet blocks
indeed perform local feature embedding via template matching once batch
normalization (BN) followed by a rectified linear unit (ReLU) is interpreted as
arg-max optimizer. Following this perspective, we tailor a residual block that
explicitly forces semantically meaningful local feature embedding through using
label information. Specifically, we assign a feature vector to each local region
according to the classes that the corresponding region matches. We evaluate
our method on three popular benchmark datasets with several architectures
for image classification and consistently show that our approach substantially
improves the performance of the baseline architectures.

1 Introduction

Figure 1: Visualization of our formula-
tion for local feature embedding and its
relation to the typical convolution block
existing in ResNet.

Convolutional neural networks (CNN),
especially ResNet-like [10] architectures
[13, 21, 26, 28], are state-of-the-art in
image recognition until very recently [5].
The success of CNNs heavily relies on hi-
erarchical feature extraction [30] through
stacked convolution blocks (i.e., convo-
lution followed by activation functions)
whose parameters are learned in top-
down manner (i.e., via feedback from
class-supervised loss function). A pos-
sible explanation for the effectiveness of
hierarchical feature extraction is consid-
ering each pixel in an intermediate feature map as a feature vector corresponding to a
© 2022. The copyright of this document resides with its authors.
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semantic entity whose existence with other such features forms some other semantic
entities in the successors of the hierarchy (e.g. wing and beak → bird).

Although this folklore is empirically studied in [29, 30, and references therein] and
further verified for attribute-based zero-shot classification in [7, 27], its algorithmic
implications for bottom-up feature extraction are not clear. Thus, the advances
typically focus on architectural designs [13, 21, 26, 28] and leave bottom-up feature
embedding formulation rather implicit, which might be a lost opportunity in improving
the classification performance. Granted that top-down class-supervised feedback is
able to shape the bottom-up behaviour through convolutional layers, can we make
hierarchical feature extraction more explicit by exploiting supervision in lower levels?

If we were given localized annotations for lower level features in addition to the
class labels, all we need would be a bottom-up feature extraction formulation to
exploit such supervision. Nevertheless, we do not have such annotations in practice,
which makes explicit supervision of intermediate layers a challenge. That being said,
it is shown in text domain [17] that linear combination of the vectors corresponding
to semantic entities yields the vector of another entity (e.g. woman + royal ≈ queen).
Then the question is “Can we use mixture of class labels to supervise lower level
feature extraction?"

In this study, we address the challenge of using class-level supervision to explicitly
shape the behavior of the intermediate features, which differs from building classifiers
at the output of intermediate layers to alleviate vanishing gradient as in GoogLeNet
[20] like architectures. We first consider bottom-up formulation of feature embedding
through template matching and rigorously show its resemblance to how typical ResNet
convolution blocks operate (Fig. 1). Building on such a relation, we propose a residual
block that assigns a feature vector to each local region according to the classes
that the corresponding region matches. We define best-matching as a solution of an
optimization problem and employ a soft-max solution for not only enabling learning
but also yielding novel semantic entities as the convex combination of the class features.
Specifically, our block is trained with class-level supervision and each local region
is encouraged to predict the class of the image it belongs. Surely, some regions are
expected to match multiple classes since local features are shared among the classes
(e.g. wing can exist in both plane and bird). Our method exploits such information to
assign semantically meaningful embedding vectors to those regions by combining the
vectors of the matched classes. Namely, we explicitly shape the bottom-up behavior
of CNNs by learning to combine existing classes to make up new classes for the local
regions. We validate our theoretical claims and show the effectiveness of our method
with extensive evaluations on 3 popular classification benchmarks.

2 Related Work
We discuss the works that are most related to ours. Briefly, our contributions include
that i) we re-formulate ResNet block as a feature embedding by template matching,
ii) we introduce a batch-statistics-free replacement of BN+ReLU, iii) we develop a
residual block that effectively combines the embedding vector of the existing classes
to yield embedding vectors to different semantic entities.

Related to interpretive feature embedding, bag of visual words based feature
aggregation [2] and matching [9] formulations are revisited for global representations.
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Those approaches build on feature embedding at the top level of CNN’s feature
extraction hierarchy. On the contrary, our approach explicitly exploits top-down
information in earlier stages of the feature extractors for learning their parameters.
That being said, our block employs auxiliary classification loss during training similar
to deeply-supervised nets [16, 20]. Those methods employ such loss only in training
phase to regularize the features and to facilitate learning without vanishing gradients.
Differently, we explicitly use predictions in both training and inference to semantically
represent local regions with the combination of class specific vectors, which is a novel
approach to use auxiliary loss in intermediate layers.

Our work is mostly related to approaches that are inspired from attention mecha-
nism [23] of natural language processing to express a token in terms of aggregated
features within its context. Interpreting convolution as weighted aggregation of
local features, predecessors [12, 18, 24] replace convolution operation entirely with
self-attention for bottom-up design of feature extraction. Albeit self-attention is later
proven to express any convolutional layer [6], patch-matching based vision transformer
(ViT) [8] shows no such convolution-mimicking attention layer is essential for pow-
erfully expressive models. In our work, our template matching based formulation
is also aligned with attention mechanism. Our work differs in that we arrive at
similarity-weighted feature aggregation from formally defining the feature embedding
through an optimization problem.

As a byproduct connection, activity normalization methods are related to our
technique as well. As the pioneer, batch normalization (BN) [14] addresses internal
covariate shift phenomenon. Our theoretical results show that BN has an alternative
purpose in BN-ReLU context as pseudo arg-max optimizer. Such a relation suggests
margin augmented soft-max1 as an alternative replacement of BN-ReLU to the existing
approaches [3, 22, 25] proposed for the relatively small mini-batches.

3 Method
We repurpose residual blocks of a typical residual network [10] as feature embedding
by template matching and accordingly, propose a novel residual block (depicted in
Fig. 2) that effectively learns local feature embedding from class labels.

We first re-formulate convolution block based local feature embedding as feature
assignment through best matching kernel. Relating BN-ReLU to arg-max optimizer,
we show that the convolution block of 3x3-BN-ReLU-1x1 inherently performs local
feature embedding via selecting the best matching convolution kernel (Fig. 1). Hence,
inspiring from feature embedding by kernel matching interpretation, we develop our
residual block.

3.1 Feature Embedding by Template Matching
We are given a feature map, f ∈ Rwxhxd, which is the output of some NN layer. At
each spatial location (i.e., pixel), we have a feature x ∈ Rd that possibly represents a
local region around it to some spatial extent.

We want to obtain a feature map, f ′ ∈ Rw′xh′xd′ , from f by transforming x into
another vector that captures the semantics of local neighborhood. We let x3x3 ∈ R9d

1A constant is concatenated to the input vector of soft-max.
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denote concatenated features of 3x3 window centered at x. We have a set of matching
kernels {ωk ∈ R9d}k each of which seeks for a particular pattern. To each kernel
ωk, we associate an embedding vector, νk ∈ Rd′ , representing the semantics of the
corresponding 3x3 pattern. We aim to replace x with the embedding vector of the
best matching kernel to its neighborhood. Hence, we formally define the problem as:

p∗ = argmax
p,q⩾0

q+Σkpk=1

q µ+
∑

k pk ω⊺
kx3x3 (P1)

where µ is a threshold to zero out the embedding vector when no kernel is matched with
at least µ similarity. p∗ is either one-hot or zero vector owing to total unimodularity
[11] of the constraints. We have p∗ = 0 when any of the activations, ak = ω⊺

kx3x3, are
no greater than µ. Then, we obtain the representation of x as x′ = Σkp∗

k νk.
Given the initial feature map, f , the transformed feature map, f ′, can be efficiently

obtained by 3x3 convolution with kernels {ωk}k, solving a linear program and 1x1
convolution with vectors {νk}k, sequentially. Although computationally efficient,
one critical problem with such formulation is that the linear program breaks the
back-propagation of the computational graph. Namely, p∗ as a function of a is not
smooth where ak = ω⊺

kx3x3.
To alleviate non-differentiability of the linear program, we can use stochastically

perturbed optimizers [4]:

p∗ = Ez′,z∼N (0,I)
[

argmax
p,q⩾0

q+Σkpk=1

q (µ+1
ϵ z′)+p⊺(a+1

ϵ z)
]

(P2)

or we can use entropy regularization to make the problem strictly concave and smooth:

p∗ = argmax
p,q⩾0

q+Σkpk=1

q µ+p⊺a− 1
ϵ (q logq +p⊺ logp)

(P3)

where ϵ in both problems controls how smooth the solution p∗ is to be. We will
introduce two propositions that ensure the existence of the Jacobian [ ∂p∗

∂a ]ij := ∂p∗
j

∂ai
.

Proposition 3.1 (follows from Lemma 1.5 [1]) Given samples z′,z from standard
normal distribution, let p̃(z′,z) := argmax

p,q⩾0
q+Σkpk=1

q (µ+1
ϵ z′)+p⊺(a+1

ϵ z). If p∗ is the solution

of the problem (P2), then we have:

∂p∗

∂a = Ez′,z∼N (0,I)
[
ϵp̃(z′,z)z⊺

]
Proposition 3.2 The solution of the problem (P3) admits closed form expression as
p∗

k = exp(ϵak)
exp(ϵµ)+Σk′ exp(ϵak′ ) (i.e., soft-max) and we have ∂p∗

∂a = ϵ(Λ(p∗)−p∗p∗⊺) where
Λ(p∗) is the diagonal matrix with p∗ as the diagonal.

Proof: The results follow from the first order optimality conditions owing to strict
concavity. ■
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The two propositions enable us to implement the best matching kernel selection
as a differentiable layer using soft maximizers. p∗ will no longer be a one-hot or
zero vector. Granted, the entities of p∗ will decay to zero if no activation is greater
than µ and we will possibly have multiple non-zero entities otherwise due to soft-max
operation. To this end, BN-ReLU can be interpreted as a soft approximation of the
problem (P1) as we will show shortly.

3.2 BN-ReLU as a Soft Maximizer of (P1)
BN [14] and its successor counterparts [3, 22, 25] perform activity normalization of
the form âk = γk

ak−E[ak]√
Var(ak)

+ βk using some batch statistics. Applying ReLU to â,
we obtain p̂ = max(â,0). Given {νk}k embedding vectors, we compute the output
feature as x′ = Σkp̂k νk. Denoting η := Σkp̂k and p̂∗

k = p̂k/η, we can equivalently write
x′ = ηΣkp̂∗

k νk, where p̂∗ is a feasible solution for problem (P1) and indeed is the

optimal solution when all the activations are less than µk for µk = E[ak]− βk

√
Var(ak)
γk

.
Moreover, p̂∗ preserves the relative ordering of the values in the solution of the problem
(P3). In fact, BN maps activations around 0 where we have ex ≈ 1+x, meaning that
BN-ReLU is a biased first order approximation for unnormalized soft-max for the
non-negative activations. Hence, BN-ReLU can be interpreted as yielding a scaled
soft maximizer to the problem (P1).

We support our claims on such a relation with empirical studies (§ 4.1) where
we replace BN-ReLU with perturbed maximizer [4] and soft-max layers and scale
the output with a constant. Such replacement of BN-ReLU mitigates batch-statistics
demand in activity normalization.

Showing the approximate equivalence between BN-ReLU and arg-max, we can use
convolution block of 3x3-BN-ReLU-1x1 to implement our local feature embedding by
template matching. In fact, 3x3-BN-ReLU-1x1 is a typical block exploited in ResNet
based architectures [10, 13, 26]. Thus, our formulation of local feature embedding
provides a different insight towards explanation of how ResNets succeed. Besides, our
formulation suggests that 3x3-BN-ReLU-1x1 convolution block is mimicking cross-
attention [23] between 3x3 patches and convolution kernels. Namely, 3x3 patches
are queries and the convolution kernels are the keys. Each patch is represented by a
vector which is the convex combination of value vectors corresponding to keys.

Figure 2: Computation flow of a residual block (top-left), our feature embedding
block (top-right), and the overall architecture equipped with our method (bottom).
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3.3 Explicit Feature Embedding as Residual Block
We just show that bottom-up behavior of CNNs having 3x3-BN-ReLU-1x1 blocks
within is feature vector assignment by template matching. In particular, the em-
bedding vector of a 3x3 patch is the scaled convex combination of the value vectors
corresponding to the convolution kernels, where combination weights are proportional
to the matching scores. Thus, each residual block of ResNet (Fig. 2) can be inter-
preted as enhancing the feature vectors in the input feature map through shortcut
connection by the semantic vectors of the best matching patterns to the corresponding
features’ 3x3 neighborhood. Following this perspective, we now formulate our feature
embedding mechanism.

Instead of 3x3 windows, we consider a larger spatial extent (i.e., patches) centered
around each pixel in a feature map. Our aim is to match such patches to classes rather
than convolution kernels. We achieve this by training an auxiliary classifier for the
patches along with the main classifier. Inevitably, the patches having shared entities
among classes will not be discriminative enough and will match to multiple classes to
minimize the classification loss. We rigorously make use of such behaviour to embed
patches regarding their semantic meaning by using learnable embedding vectors, i.e.,
value vectors, for the classes. Specifically, we use the prediction scores to compute
convex combination of the value vectors. Provided that the learned value vectors
correspond to semantics of the classes, then their combination will correspond to new
semantic entities (e.g. 0.5plane + 0.5bird ≈ wing). In this way, we manage to exploit
weighted combination of the labels to explicitly supervise local feature extraction.

Formally, given an input feature map, f ∈ Rwxhxd, we extract w
2 x h

2 patches,

x2 ∈ R
w
2 x h

2 xd where x with box 2 is a patch centered at x. We then obtain a global
representation by average pooling for each patch as xg = 1

|x2|Σx∈x2x where |x2|
denotes the number of features. We apply a 1x1 convolution (i.e., linear transform)
with bias to obtain class matching scores (i.e., activations, a, in the context of our
original formulation in § 3.1) for c-many classes as ak = α⊺

kxg + βk for k ∈ [1 . . . c]
where αk and βk are the trainable vector and the bias term for class k.

To learn the classifier parameters, (α,β), we augment the training loss with
an auxiliary per patch classification loss. Hence, we are able to propagate label
supervision in different levels to explicitly encourage feature embedding by template
matching paradigm. The loss for a dataset, D, of image(I)-label(y) tuples becomes:

L(D) = 1
|D|

∑
(I,y)∈D

[
(19λ)ℓ(h(I),y)+ 1

wh

∑
x∈h1(I)

λℓ(h2(x2),y)
]

(3.1)

where h1(·) denotes the network output of size wxh until our layer, h2(·) denotes
our layer’s class scores, h(·) denotes the whole network’s class scores and ℓ(·) is the
cross-entropy loss of soft-maxed scores.

Finally, following our results from §§ 3.1 and 3.2, we apply BN-ReLU-1x1 convolu-
tion block to obtain the final representation, x′ ∈ Rd, for the patch x2. Namely, to
each class, we associate an embedding vector, νk ∈ Rd, to describe the whole patch as
x′ = Σkp̂k νk where p̂ is the output of BN-ReLU as we explain in § 3.2. We should
note that we use soft-max in loss computation to have normalized probabilities and
we rigorously use BN-ReLU for the mixing coefficients to tackle no-match cases while
soft-maxing. Hence, our method matches local regions to the class labels rather than
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particular patterns and embeds the corresponding semantic information as the scaled
convex combination of the class semantics so that the embedded semantic is to be
useful in the further levels of the feature embedding hierarchy. Similar to typical
residual block, we add the resultant feature map, f ′, to the initial map, f , via shortcut
connection with a per-pixel linear transform, i.e., fout = conv1x1(f)+f ′.

3.4 Implementation Details
We use ResNet (RN) [10], Wide-ResNet (WRN) [28] of depth 16 and widening factor 2,
and DenseNet (DN) [13] of depth 100 and growth rate 12 as the baseline architectures
each of which has 4 stages. In RN and WRN, we have spatial reduction in stage-2 and
stage-3 whereas in DN, we have spatial reduction in the first two stages. We summarize
the general architecture in Fig. 2 where we also show our feature embedding mechanism
as well as h1(·) and h2(·) in Eq. (3.1). We place our layer in between the last two
stages. We only add an extra classification and two linear transforms (i.e., three 1x1
convolutions) to the baselines. For DN, we additionally employ concatenation of f ′

and f instead of addition through shortcut to align with the architectural design of
DN. We provide further details for reproducibility in the supplementary material.

4 Experimental Work
We evaluate the effectiveness of the proposed feature embedding method for the image
recognition task. We further perform ablation studies for the implications of our
formulations as well as the effects of the hyperparameters.

Datasets. 100-class Mini-ImageNet [19] with images of size 84x84 and Cifar [15]
(10 and 100) with images of size 32x32. We use splits of 65%, 15%, 20% for train,
validation, test sets with train data augmentation of [10].

Training. Default Adam optimizer with 1093 learning rate, 1094 weight decay,
and mini-batch size of 32.

Hyperparameters. We set λ=0.5 in Eq. (3.1) based on our ablation study
(Fig. 4). Due to larger images of Mini-ImageNet, we employ additional spatial
reduction in the first stages of RN and WRN, and in the third stage of DN to have
similar output feature size with Cifar.

4.1 Ablation Studies

Figure 3: Replacing BN-ReLU

Replacing BN-ReLU with soft-maximizers. To
support our claims in § 3.2, we replace BN-ReLU
following 3x3 convolution with perturbed maximizer
[4] and soft-max layers with µ and η constants from
§ 3.2. In particular, we concatenate µ to activations
and perform soft-max, which we refer margin aug-
mented soft-max. We then scale the output by η.
Using µk = E[ak] − βk

√
Var(ak)
γk

, we estimate µ=2.5
from BN layers of a pre-trained ResNet20 as the
average of non-zero µk for each activation. Similarly,
we use η=17 from the average of per-pixel sum of the activations after BN-ReLU.
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For perturbed maximizer [4], we use 600 samples for empirical expectation. We use
ϵ=1 for both methods based on the ablation study in [4]. We evaluated the methods
with relatively small (8) and larger (32) batch sizes except we exclude perturbed
maximizer in 32 batch size due to its memory demand. We use 3-stage 2-block
ResNet20 [10] baseline and Cifar-10 dataset in our evaluation. The comparisons are
provided in Fig. 3. We observe that the methods perform on par with each other.
Supporting our claims in § 3.2, such empirical results also suggest a technique for
activity normalization without using batch-statistics.

Figure 4: Effect of λ.

Effect of λ. We perform grid search on λ mix-
ing coefficient for the two losses in Eq. (3.1) (i.e.,
ℓ and ℓ′ in Fig. 2). We use 4-stage 2-block ResNet
with our method and Cifar-10 dataset in our eval-
uation. We provide the results in Fig. 4. Small λ
values (i.e., absence of auxiliary loss) degrades the
performance. We find that equally weighting the
losses (λ=0.5) brings the best performance.

Number of blocks (depth). We evaluate
both 2-block (RN26) and 3-block (RN38) stages
in RN baseline to examine the effect of our feature
embedding with the increased depth. The com-

parisons are provided in Table 1 where we observe that increased depth boosts the
performance of our method. Notably, we also observe that our method with less depth
performs on par with the baseline of more depth.

4.2 Classification Results

Table 1: Evaluation on image recognition task.
Bold: best in its category. C : the number of classes.

Dataset → Cifar10 Cifar100 Mini-ImageNet
Architecture ↓ Params top-1 acc. top-1 acc. top-1 acc.

RN26 0.96M+257C 89.52 65.94 60.43
RN26-aux. 0.96M+386C 90.57 66.21 60.70
RN26-Ours 0.98M+516C 91.06 66.78 61.23
RN38 1.42M+257C 90.78 68.15 60.72
RN38-Ours 1.44M+516C 91.36 69.01 63.83
WRN16 1.28M+129C 90.52 67.11 60.73
WRN16-Ours 1.30M+388C 91.10 67.36 62.92
DN100 1.20M+535C 92.62 71.65 65.03
DN100-Ours 1.32M+1222C 92.92 71.25 68.86
DN100-Ours-C 1.36M+1264C 92.71 72.14 68.93

We train several architec-
tures (RN#, WRN16, DN100)
equipped with our feature em-
bedding block (Baseline-Ours).
The baselines are of different
architectural choices with vary-
ing depths. Our aim is rather
to show the effectiveness of our
theoretical derivations than to
push state-of-the-art (SOTA)
by architecture design. We
firmly believe that our experi-
ments are sufficient to validate
the effectiveness and the generalization capability of our method as well as our claims.

In order to minimize the confounding of the factors other than our proposed
method, we keep the comparisons as fair as possible following the same experimental
settings disclosed in § 4 for all architectures. We provide the results in Table 1 where
we mark all results that outperform its baseline counterpart. We observe that we
improve the performance of WRN and DN, which are SOTA CNN architectures.
Moreover, our method consistently improves all the baselines and predominantly,
such improvement does not come from the marginal parameter increase that our
method brings. 2-block RN26 with our method is mostly superior to its 3-block

Citation
Citation
{Berthet, Blondel, Teboul, Cuturi, Vert, and Bach} 2020

Citation
Citation
{Berthet, Blondel, Teboul, Cuturi, Vert, and Bach} 2020

Citation
Citation
{He, Zhang, Ren, and Sun} 2016



GORGUN et al.: FEATURE EMBEDDING BY TEMPLATE MATCHING 9

baseline (RN38). In relatively shallow architectures, our method’s improvement is
more significant. With DN architecture, we also experiment enhancing the features by
concatenation (DN-Ours-C) instead of addition (§ 3.4). Concatenation is marginally
superior to addition in DN owing to better alignment with the architecture of DN.

We also evaluate RN26 with auxiliary classification loss only as in [16, 20] to
show the efficiency of our contribution which is exploiting matching scores as the
mixing coefficients for the class embedding vectors. Our method brings consistent
improvements in all datasets with respect to direct application of auxiliary classification
loss in the intermediate layers.

4.3 Analysis of Feature Embedding Behaviour
We further analyze the effect of our feature embedding mechanism with RN26 in
Cifar10 dataset through t-SNE plots of the features (Figs. 5 and 6) as well as sample
patches (Fig. 7) corresponding to spatial extent of the features. We sample 80 images
for each class and project the pixels at the feature maps to 2D space.

Figure 5: 2D t-SNE projections of the features with and without our method.

Figure 6: Patches embedded by 2D t-SNE
with respect to their class predictions (left)
and their embedding vectors (right). Mag-
nified version is available in supplementary.

Embedding space geometry. We
first compare the geometry of the fea-
tures just before the last stage. We
provide the relevant 2D t-SNE projec-
tions in Fig. 5. We observe that baseline
RN’s features are scattered across the
space regardless of their higher level se-
mantics. On the contrary, the features
at the output of our block (i.e., stage-
4 input) are clustered with respect to
their semantics. In particular, animals
occupy the one half of the space whereas
vehicles lie in the other half. We further
show that such behaviour is the result
of value vector embeddings. When we compare the features at the input and the
output of our block (i.e., stage-3 out and stage-4 input), we see that clustering occurs
after our feature embedding, validating our mechanism of feature embedding by
the matched semantics. That said, in Fig. 6, we also plot the patches according
to 2D t-SNE of their class predictions and the resultant embedding vectors as the
weighted combination of the class value vectors (f ′ in Fig. 2). With class predictions,
semantically similar patches are embedded apart (e.g. car and truck). On the other
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hand, embedding vectors reshape the geometry so that semantically similar entities
are mapped close, yet another result supporting the effectiveness of feature embedding
by template matching mechanism.

Figure 7: Sample patches with their
prediction scores stitched on the top.

Visual words. To support our claims
on generating vectors corresponding to new
semantic entities from the combination of
class vectors, we perform k-means cluster-
ing with 100 centers of the class prediction
scores. We then take the patches that are
nearest to the centers. We provide 16 such
patches in Fig. 7 together with their pre-
diction scores. We observe that different
combination of the classes means different
semantic entities. For instance, wing is gen-

erated by plane and bird classes, we have tire as the combination of car and truck.
We observe class-discriminative patches inheriting the class label. We as well observe
more generic entities as the mixture of many classes such as fur from animal classes.

5 Conclusion
We reformulated convolution block based local feature embedding as feature assignment
through best matching kernel and showed that 3x3-soft-max-1x1 implements such a
mechanism. Approximately relating BN-ReLU to unnormalized soft-max, we brought
a novel view point to 3x3-BN-ReLU-1x1 which we encounter in popular ResNet-based
models. Building on perspective explaining the bottom-up behavior of 3x3-BN-ReLU-
1x1 convolution block, we proposed a feature extraction mechanism that exploits
weighted combination of class-semantic vectors to embed vector representation to the
patches. We implemented such mechanism as a simple, yet effective residual layer.
Our layer is learnable and effectively selects the classes that matches the patches most
for feature embedding. We implemented our method with several architectures. With
extensive empirical studies, we validated the effectiveness of our feature embedding
layer as well as our theoretical claims.
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