
GORGUN et al.: SUPPLEMENTARY MATERIAL 1

Supplementary Material for "Feature
Embedding by Template Matching as a ResNet
Block"
Ada Görgün
ada.gorgun@metu.edu.tr
Yeti Z. Gürbüz
yeti@metu.edu.tr
A. Aydın Alatan
alatan@metu.edu.tr

Dept. of Electrical and Electronics Eng.
& Center for Image Analysis (OGAM)
Middle East Technical University
Ankara, Turkey

1 Architectural Details

Table 1: Summary of the architectural choices including the input (in) and the output
(out) feature dimensions, and the spatial reduction (reduction) of each stage for Cifar.

stage-1 stage-2 stage-3 Our Block stage-4
Architectures ↓ in out reduction in out reduction in out reduction in out reduction in out reduction

RN26 16 64 ↓ 1 64 128 ↓ 2 128 128 ↓ 2 - - - 128 256 ↓ 1
RN26-Ours 16 64 ↓ 1 64 128 ↓ 2 128 128 ↓ 2 128 128 ↓ 1 128 256 ↓ 1

RN38 16 64 ↓ 1 64 128 ↓ 2 128 128 ↓ 2 - - - 128 256 ↓ 1
RN38-Ours 16 64 ↓ 1 64 128 ↓ 2 128 128 ↓ 2 128 128 ↓ 1 128 256 ↓ 1
WRN16 16 32 ↓ 1 32 64 ↓ 2 64 128 ↓ 2 - - - 128 128 -
WRN16-Ours 16 32 ↓ 1 32 64 ↓ 2 64 128 ↓ 2 128 128 ↓ 1 128 128 -
DN100 24 108 ↓ 2 108 150 ↓ 2 150 342 - - - - 342 534 -
DN100-Ours 24 108 ↓ 2 108 150 ↓ 2 150 342 - 342 342 ↓ 1 342 534 -
DN100-Ours-C 24 108 ↓ 2 108 150 ↓ 2 150 342 - 342 534 - 534 726 -

Table 2: Summary of the architectural choices including the input (in) and the output
(out) feature dimensions, and the spatial reduction (reduction) of each stage for
Mini-Imagenet.

stage-1 stage-2 stage-3 Our Block stage-4
Architectures ↓ in out reduction in out reduction in out reduction in out reduction in out reduction

RN26 16 64 ↓ 2 64 128 ↓ 2 128 128 ↓ 2 - - - 128 256 ↓ 1
RN26-Ours 16 64 ↓ 2 64 128 ↓ 2 128 128 ↓ 2 128 128 ↓ 1 128 256 ↓ 1

RN38 16 64 ↓ 2 64 128 ↓ 2 128 128 ↓ 2 - - - 128 256 ↓ 1
RN38-Ours 16 64 ↓ 2 64 128 ↓ 2 128 128 ↓ 2 128 128 ↓ 1 128 256 ↓ 1
WRN16 16 32 ↓ 2 32 64 ↓ 2 64 128 ↓ 2 - - - 128 128 -
WRN16-Ours 16 32 ↓ 2 32 64 ↓ 2 64 128 ↓ 2 128 128 ↓ 1 128 128 -
DN100 24 108 ↓ 2 108 150 ↓ 2 150 171 ↓ 2 - - - 171 363 -
DN100-Ours 24 108 ↓ 2 108 150 ↓ 2 150 171 ↓ 2 171 171 ↓ 1 171 363 -
DN100-Ours-C 24 108 ↓ 2 108 150 ↓ 2 150 171 ↓ 2 171 363 - 363 555 -

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 GORGUN et al.: SUPPLEMENTARY MATERIAL

We provide details of the architectural choices for the baseline methods for the sake
of reproducibility of our experimental work. We use ResNet (RN) [1], Wide-ResNet
(WRN) [5], and DenseNet (DN) [2] as the baseline architectures. We use 4 stages for
each architecture. Note that the implementation of the stage differs from method to
method as we will disclose shortly.

ResNet (RN). We stick to the original implementation of ResNet v2 [1] including
the combination of convolution, batch normalization (BN) and ReLU layers at the
start of the first stage. In our notation, a typical RN v2 stage includes multiple
residual blocks which are called bottleneck residual units. The first block of each stage
perform 1x1 convolution in the shortcut connection. For the stages that perform
spatial reduction, the stride of that convolution is 2. We use an additional stage (stage-
4) to incorporate our method easily during implementation. We perform experiments
with two RN architectures with the number of blocks for each stage being 2 (RN26)
and 3 (RN38), respectively. We summarize the architecture details in Tabs. 1 and 2
for Cifar [3] and Mini-Imagenet [4], respectively. ↓ k in reduction means we have 1x1
convolution with stride k in the shortcut connection before addition, and − means
direct shortcut connection. Only for Cifar 10, we find that using an additional 2x2
average pooling in the shortcut before the 1x1 convolution layer (i.e., linear transform)
better generalizes the incoming features. Moreover, we use the output of the BN as
the input to the soft-max operation to shape the softness of the soft-max predictions.
With that being said, one can use temperature scaling to logits instead. Yet BN
performs such a scaling inherently since it provides us with scaled and normalized
activations. Hence we do not have to choose the temperature manually. Such tricks
bring marginal improvements to the performance in Cifar 10.

Wide-ResNet (WRN). We stick to the original implementation of WRN [5]
including a single convolution layer at the start of the first stage. Similar to ResNet,
a typical WRN stage includes multiple residual blocks which are called basic residual
architecture in the original paper [5]. For the stages that perform spatial reduction,
the first block includes 1x1 convolution with stride 2 in the shortcut connection. If
the channel dimensions of the input and the output features are not the same for
that stage, the first block again includes 1x1 convolution with stride 1 in the shortcut
connection. We use an additional stage (stage-4) to incorporate our method easily
during implementation. We use WRN of depth 16 and widening factor 2. Namely,
the depth of the each stage is computed so that the total depth is 16. We do not
use dropout. We summarize the architecture details in Tabs. 1 and 2 for Cifar and
Mini-Imagenet, respectively. ↓ k in reduction means we have 1x1 convolution with
stride k in the shortcut connection before addition, and − means direct shortcut
connection. In our block, we use an extra BN before 4x4 average pooling owing to the
slight architectural differences of WRN from RN (In fact, we are doing that to make
the internal classification stage of the patches more similar to the final classification
stage of the original network). Only for Cifar 10, we use the same implementation
tricks as in RN.

DenseNet (DN). We stick to the original implementation of DN-BC [2] including
a single convolution layer at the start of the first stage. In the context of DN, a typical
stage includes a multiple-layered dense block [2], and a transition layer [2] if reduction
is specified. We use bottleneck implementation [2] in dense blocks with 0.5 compression
factor [2] at the transition layers since we are using DN-BC. The compression factor
reduces the channel dimension by the specified factor. We use an additional stage

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Krizhevsky etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Ravi and Larochelle} 2017

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

GORGUN et al.: SUPPLEMENTARY MATERIAL 3

(stage-4) to incorporate our method easily during implementation. We use DN of
depth 100 and growth rate 12. Namely, the depth of the each stage is computed so
that the total depth is 100. For our method, we additionally employ concatenation of
the embedded feature and the input feature instead of addition through shortcut to
align with the architectural design of DN, which is referred as DN100-Ours-C. For
DN100-Ours-C, we find that using value vectors of the half dimension of the input
gives good results. Thus, we use 192 dimensional value vectors (i.e., 192-many 1x1
convolutions for embedding) and concatenate them with the corresponding input.
Aligned with the baseline architecture, we do not use 1x1 convolution in the shortcut
connection. We summarize the architecture details in Tabs. 1 and 2 for Cifar and
Mini-Imagenet, respectively. ↓ 2 in reduction means we have the transition layer in
between DN stages, ↓ 1 means we have 1x1 convolution in our shortcut connection,
and − means direct connection without any convolution. Similar to WRN, we use an
extra BN before 4x4 average pooling in our block. Only for Cifar 10, we use the same
implementation tricks as in RN and WRN except that we do not use 2x2 average
pooling in the shortcut since it results in over smoothing considering the transition
layers also inheriting 2x2 average pooling.

2 Magnified Figures and Discussion
We provide magnified visualizations of class predictions and embedding vectors of
patches in Figs. 2 and 3, a summary of which is already included in the main paper.
Specifically, we generate a sprite image of the patches, where each patch is embedded
with respect to its class prediction vector (Fig. 2) or embedding vector as the convex
combination of class embedding, i.e., value, vectors (Fig. 3). We enhance patch
images with further visual aids as illustrated in Fig. 1, in which the color in the
frame represents the true class, the colored box in the left corner represents the final
predicted class coming from the classifier and the grayish-filled box in the middle
represents the entropy calculated from the soft-max predictions of our block for each
patch image extracted. We especially use entropy calculation to understand how
peaky or how uniform the soft-max predictions are to further interpret the results.
The color of the entropy box goes darker as the entropy goes lower and vice versa.

Showcasing the patch image convention, we include two examples in Fig. 1 with
their corresponding histograms obtained from the soft-max predictions of our block,
which are also used in the entropy calculation. These examples consist of one patch
image having a dog face and the other one having an animal body. Taking the dog
image for instance, our soft-max predictions (histogram) have a peak at dog class and
the final classifier (the box in the left corner) as well predicts the class dog, which
can be seen from its color. This color also matches with the frame color, indicating
that we make the correct assignment for the image from which the patch is extracted.
Moreover, since the histogram is very peaky, we have a very low entropy. Hence, we
have a darker colored box in the middle as expected. As an example of another case,
we predict the wrong class in the final classifier for the image from which the patch
with an animal body is extracted. Note that in that case the color of the frame and the
box in the left corner do not match. We also have a relatively higher entropy which is
indicated by the brightness of the middle box. We indeed expect such kind of results
for the patches having semantic entities which are shared among the classes. That

4 GORGUN et al.: SUPPLEMENTARY MATERIAL

Figure 1: The convention used in the visualization of 2D t-SNE projections of the
features.

being said, we see from the corresponding histogram that the non-zero histogram bins
only come from animal classes as expected. Due to the structure of the body and the
combination of the other corresponding patch images at the final classification stage,
the final prediction becomes the class deer instead of horse, which are close species in
nature.

For Fig. 3, we additionally embed the class value vectors as the images filled with
solid colors corresponding to classes. We also embed 0-vector as a black filled image.
We observe that value vectors can be considered as the vertices of the convex hull of
the embedded features. Hence, their convex combination creates the corresponding
embedding vectors.

Once we look at the origin (black box) by zooming in the image, we see that
the patch images nearby have larger entropy compared to the ones away from the
0-vector. In other words, the patches of high entropy are assigned to 0-vector. Such
behavior is not surprising since we believe the patches of high entropy (i.e., shared
among many classes) should not carry too much information. These patches generally
include shared nuisance information than discriminative patterns such as beak, ear
and wing. Similarly, we observe relatively higher entropy of the predictions in the
transition between classes such as bird and plane, car and truck or plane and ship.
These passage points represent mutual semantic entities for those classes, such as wing
for bird and plane, tire for car and truck or blue background for plane and ship, yet
another supporting result for our claims on combining class labels to generate novel
labels corresponding to different semantic entities. For the discriminative entities (i.e.,
the ones nearby the class value vectors), the distinction between the classes are more
clear, resulting in smaller entropy.

GORGUN et al.: SUPPLEMENTARY MATERIAL 5

Figure 2: Patches embedded by 2D t-SNE with respect to their class predictions.

6 GORGUN et al.: SUPPLEMENTARY MATERIAL

Figure 3: Patches embedded by 2D t-SNE with respect to convex combination of
class embedding vectors.

GORGUN et al.: SUPPLEMENTARY MATERIAL 7

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in

deep residual networks. In European conference on computer vision, 2016.

[2] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In the IEEE conference on computer
vision and pattern recognition, 2017.

[3] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[4] Sachin Ravi and H. Larochelle. Optimization as a model for few-shot learning. In
ICLR, 2017.

[5] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British
Machine Vision Conference 2016. British Machine Vision Association, 2016.

