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Abstract

The appearance of surfaces in underwater images is degraded by the selective atten-
uation of light in water. The light intensity decays exponentially along the vertical depth
and along the range between the surface and the camera. Images capturing a large ver-
tical depth exhibit non-uniform water colour. Restoration methods that compensate for
the resulting colour cast and reduced contrast generally ignore the degradation caused
by depth, whereas methods that target the removal of the colour cast often distort the
colour of the water mass. Furthermore, most methods assume a uniform water colour
and under-compensate for the colour when the water colour is non-uniform. In this pa-
per, we present a selective chromatic adaptation (SeCA) method that restores the colour
appearance of underwater surfaces to that under an unattenuated light, as if the surfaces
were captured in air. Using the Schechner-Karpel model, we restore the colour degraded
along the range by estimating the extent of colour degradation for each colour channel.
Moreover, we handle the case of uniform and non-uniform water colour with one sin-
gle approach. We also derive a scene-adaptive map that restores the colour degraded
along the vertical depth by selectively removing the cast on surfaces while maintain-
ing the water colour. SeCA needs no knowledge of the range nor the vertical depth at
which the surfaces are captured. SeCA outperforms state-of-the-art neural networks in
terms of colour accuracy. Furthermore, we validate the stability by deploying SeCA on
underwater videos without any temporal regularisation.

1 Introduction

Underwater images are degraded by the selective attenuation of light in water. Surfaces cap-
tured in the scene, such as fish, coral and divers, are under colour cast and have reduced
contrast. The extent of attenuation is an exponential decay that depends on the distance light
travels, its wavelength, and the water composition [20]. The attenuation along the vertical
depth reduces the ambient light reaching the scene [4]. As the observed water colour changes
ambient light, an image capturing a large vertical depth hence exhibits a non-uniform water
colour. Moreover, the attenuated ambient light illuminating the surfaces causes the colour
cast. The light reflected by a surface is further attenuated along the range before reach-
ing the camera. Moreover, a portion of the ambient light, not reflected by any surfaces, is
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(back)scattered towards the camera and veils the surfaces with the water colour [32]. In
Jerlov oceanic water types, red is most attenuated and surfaces are under blue cast [20].

Physics-based methods restore the colour appearance degraded along the range using
priors that are learnt using neural networks [19, 37, 39], or derived from observations of
the colour [5, 8, 10, 12, 13, 15] or texture appearance [34]. When the image exhibits a
non-uniform water colour, restoring with a uniform background light under-compensates the
colour at the bottom of the image. Existing methods that address this non-uniform water
colour requires knowledge of the change in vertical depth in the scene, which is generally
unavailable [10]. A few methods also remove the colour cast caused by attenuation along the
depth by chromatic adaptation [3, 5] but often distort the water colour and result in unnatural
appearance [29]. Using learning-based methods comes with the difficulty of determining a
reference image with no degradation. Some methods instead synthesise the degraded image
from indoor images (used as reference) that also provided the range of the scene, without
modelling the attenuated illuminant [26, 38]. The networks trained on these images only
compensate for the range but not the depth. Furthermore, the limited colour palette of indoor
images results in a similarly limited colour palette in the processed images. An alternative
source of reference images is computer-graphics images that allow full control of the colour
palette [31]. Reference images can also be selected via subjective tests [14, 25, 27], for
example, the images that are the most chosen among images processed with 12 processing
methods [25, 27]. However, the learnt restoration is limited by the fact that these images do
not represent the scenes without degradations.

In this paper, we propose a selective chromatic adaptation (SeCA) method for images
taken in Jerlov oceanic water types with a visible water mass. We selectively restore the
colour appearance of surfaces degraded by the attenuation along the vertical depth and the
range between the surface and the camera, while preserving the water colour. To restore the
colour appearance along the range, we establish an empirical colour constraint for candi-
date background light pixels using a physics-based model [35]. We show how, with a single
approach, we can handle images with uniform as well as non-uniform background light,
without prior knowledge on the vertical depth captured in the image. To estimate the trans-
mission map of the red channel, which is the most attenuated, we use a colour appearance
prior for oceanic water. To address the wavelength-dependency of attenuation, based on em-
pirical oceanic data, we derive a transmission map for each colour channel. To compensate
for the residual colour cast caused by the attenuation along the depth, we derive a scene
adaptive map that selectively removes the residual cast on surfaces. The code is available
at https://github.com/janicelicy/SeCA/.

2 Selective colour restoration
Let I be the (degraded) underwater image, that captures surfaces and the water mass, in
the linear RGB colour space and Ik ∈ [0,1], k ∈ {R,G,B}, denote a colour channel. We
will drop most subscripts for simplicity. Let (x,y) be a pixel in I representing a point of
the scene at a vertical depth D under the water surface and a range z from the camera.
The image I can be modelled as a convex combination of the light reflected by surfaces, J,
and the backscattered ambient or background light, A (Schechner-Karpel model [35]). The
combination is modulated by a transmission map, T, that describes the attenuation extent
of each colour channel as Tk = e−βkz, k ∈ {R,G,B}, where βk is the wideband attenuation
coefficient that quantifies the attenuation of the light contributing to the colour channel and z
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is the range map of the scene. Therefore

I = T · J+(1−T) ·A, (1)

where · denotes element-wise multiplication. The range-compensated image J, which repre-
sents the scene illuminated by an attenuated illuminant, can be obtained by solving Eq. 1.

To fully restore the surfaces’ colour appearance, the residual colour cast should be re-
moved, for example, by chromatic adaptation. Chromatic adaptation transforms the image
under the attenuated illuminant, J, to the image under a target unattenuated illuminant, Ĵ,
e.g. with a linear transformation [16]

Ĵ =M−1DMJ, (2)

where the 3-by-3 matrix M maps a colour to the LMS colour space, that models the re-
sponses of the three types of cones in the human eye, and the 3-by-3 diagonal matrix D
scales the intensity of each channel independently to achieve the cone responses under the
unattenuated illuminant [16]. In particular, when all diagonal entries are 1, the colour cast
remains (i.e. no chromatic adaptation is performed). The surfaces in Ĵ would appear as if
they were captured in air. Fig. 1 summarises the proposed method.

2.1 Restoration along the range
Transmission map. We use the observation that the red intensity of surfaces decreases with
increasing range and that the blue and green intensities become more similar to the water
colour [15]. Assuming that the degradation extent is constant in a local window Ω(x,y)
centred at (x,y), we estimate a coarse transmission map of the red colour channel using the
Red Channel Prior [15] as

T̃R(x,y) = 1−min

(
min

(s,t)∈Ω(x,y)

1− IR(s, t)
1−A⋆

R
, min
(s,t)∈Ω(x,y)

IG(s, t)
A⋆

G
, min
(s,t)∈Ω(x,y)

IB(s, t)
A⋆

B

)
, (3)

where A⋆ is the background light that represents the water colour. Pixels with a low red
intensity have a smaller T̃R, whereas pixels with colour intensity different from that of the
background light have T̃R close to 1. Since the locally constant transmission assumption
causes mis-estimation at surface boundaries, we obtain the refined map, TR, by applying1

Laplacian matting [24] to T̃R. We then derive the transmission maps of blue and green chan-
nels using the ratio between the wideband attenuation coefficients of the colour channels,
e.g. TB = (TR)

βB/βR . This ratio can be expressed in terms of the scattering coefficients b, the
background light A⋆ and the peak wavelengths λ of the colour channel as [17, 41]:

βk

βR
=

bkA⋆
R

bRA⋆
k
, where

bk

bR
=

1.62517−0.00113λk

1.62517−0.00113λR
, k ∈ {G,B}, (4)

where λ for red, green and blue channels are 620nm, 540nm and 450nm, respectively [41].
Background light. We obtain the background light from water pixels that represent the visi-
ble water mass [5]. We establish a constraint for feasible water colour in oceanic water types
from empirical data and present an approach that handles both uniform and non-uniform
background light A. We first identify candidate water pixels as flat regions [5] with similar

1For numerical stability, we also put in a lower bound of 0.1 to the transmission value to obtain TR.
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Transmission map estimationWater pixel identification

Background light estimation

Residual cast removal

Water pixels 

Coarse map !𝐓!

Refined map 𝐓! Non-uniform 𝐀,𝐾 > 0

Range-compensated 𝐉

Degraded 𝐈 SeCA-restored !𝐉
Scene adaptive map 𝜼

Luminance channel of *𝐉

Repeat with 𝜁 ∈ [1,0.95,...,0]

Pixels represent water colour

Pixels from flat region

𝐓" and 𝐓# derived from 𝐓!

Figure 1: Proposed selective colour restoration from a single image. We first identify the
water pixels and calculate the representative water colour (from pixels marked as red). We
then estimate the transmission maps for the three colour channels. We then estimate the
background light, which could be non-uniform, with linear regression on the change per
pixel distance from the water pixels. Finally, we selectively remove the residual colour cast,
caused by attenuation along the depth, from surfaces with the proposed scene adaptive map
and estimated illuminant.

intensities, i.e. where the standard deviation in a local window Ω(x,y) of the greyscale image
of I is smaller than 1% of the intensity range. As flat regions do not necessarily represent
the water mass (see Fig. 1), we also aim to identify pixels representing the water colour. To
this end, we synthesise the water colour as captured by different cameras at various depth for
Jerlov water types. While the use of synthetic data has been adopted in underwater studies [2]
and computational photography [21] to address the lack of real-world data for physics-based
problems, we are the first to use these data in underwater image restoration.

The intensities of water pixels are that of the ambient light at a depth D sampled by the
camera colour sensors (red, green, blue) over the visible spectrum of light, ω , as

Ak =
∫

ω

Sk(λ )E(0,λ )e−Kd(λ )Ddλ , k = {R,G,B}, (5)

where E(0,λ ) is the light intensity at the water surface, Sk(λ ) is the spectral response func-
tion of the colour sensor, and Kd(λ ) is the diffuse attenuation coefficient. We synthesise the
water colour (Eq. 5) using the known response function of a collection of 28 cameras [21]
and the diffuse attenuation coefficients for the five oceanic water types, namely type I, IA,
IB, II and III [20]. We synthesise for the depth D between 0.05m and 20m with a 0.05m
interval, as most red light has diminished after 20m in oceanic water.

We investigate the ratio between colour channels changes to establish the feasible colour
constraint. To minimise the effect of depth on the intensity, we take the natural logarithm
of the intensity as lnAG/lnAR and lnAB/lnAR. Fig. 2(a) and (b) visualise the ratios along
the depth for a Canon D90 camera. Both ratios are shown to be increasing with the depth
as the non-linear natural logarithm function, cannot completely remove the effect of depth
from the integrated sampled intensities (Eq. 5). However, we can observe that the loci of the
ratios for the Canon D90 are within the numerical value 0.7 (Fig. 2(c)). Moreover, the loci
of lnAG/lnAR and lnAB/lnAR for the 28 cameras lie within the numerical values 0.8 and
0.7, respectively (Fig. 2(d)). We hence propose the following empirical ratio constraints to
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Figure 2: We investigated the feasible water colour by synthesising water colours along
the depth 0.05m to 20m as captured by different cameras (Eq. 5). (a)(b) Relationship be-
tween lnAB/ lnAR and lnAG/ lnAR of a Nikon D90 camera for the 5 oceanic water types
(from bottom to top: type I, IA, IB, II and III). Marker colour is the synthesised water
colour. (c) Relationship between lnAB/ lnAR and lnAG/ lnAR of Nikon D90. (d) Contours
of the loci of 28 cameras for the 5 oceanic water types.

identify water pixels:

lnAB

lnAR
≤ 0.7 and

lnAG

lnAR
≤ 0.8. (6)

From the identified water pixels, we derive the representative background light, A⋆, as aver-
age colour with the top 1% difference between the dominating water colour channel, i.e. the
less attenuated between green and blue, and the most attenuated red colour channel.

To derive the non-uniform background light, we quantify the intensity change by a dif-
fuse attenuation coefficient per pixel distance, K, of water pixels. The intensity of two water
pixels that are vertically d pixels apart can be related as A(x,y+ d) = A(x,y)e−Kd . This
can also be expressed in the linear form that depends on the pixel distance d, by taking the
natural logarithm on both sides

lnA(x,y+d) = lnA(x,y)−Kd, (7)

where K is the slope of the line and can be estimated with linear regression, using lnA and d
from the water pixels. The changes in A for pixels representing surfaces are smaller than K,
as the same pixel distance corresponds to a smaller vertical change in depth. Fig. 3 shows the
pinhole camera model capturing points representing surfaces (P and S) and water mass (Q
and R). As a pixel can represent any point in the scene along the line passing through the
camera lens’ optical centre, O, the change in A between pixels representing the surfaces
can be expressed as a proportion of that between points representing water, as PS

QRK. We
describe the derivation of the proportion PS/QR when S and R are on the principal axis
of the camera lens2. From the similar triangles ∆POS and ∆QOR, the proportion can be
obtained as PS/QR= PO/QO = zP/zQ, i.e. ratio between the range of points P and Q.
As the range is encoded in the exponent of transmission map T, we can then obtain the ratio
between ranges by taking natural logarithm of T, that will eliminate the wideband attenuation
coefficient in the exponent, as zP/zQ = lnT(xP ,yP)/lnT(xQ,yQ), where T(xP ,yP) and
T(xQ,yQ) are the transmission map values of the pixels representing P and Q, respectively.
As P is an arbitrary point representing a surface in I and Q represents the water mass, the

2The general case can be derived by projecting the the points onto the principal axis and considering the
corresponding change between the pixels at the image centre and pixels representing the point.
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Figure 3: Pinhole camera model shows that the same pixel distance in the image I could refer
to points at different ranges from the camera. For example, the points P and S represent
surfaces in the scene, whereas the points Q and R represent the water mass. The points PS
and QR, with the same pixel distances in I, have different change in water colour in the
scene. The change between the PS that is closer to the camera, O, is smaller than that
of QR, which are farther away from the camera.

change in A for pixels representing any pixel can be expressed in the transmission map as

z
z⋆

K =
lnT
lnT⋆

K, (8)

where T⋆ is the average transmission map values of the pixels contributing to A⋆. Finally,
we obtain A for all pixels, indexed by (x,y), as:

A = A⋆ exp
(
− lnT

lnT⋆
K (y− y⋆)

)
(9)

where y−y⋆ is the pixel distance. When A is in fact uniform, an estimated K = 0 reduces all
entries in A to A⋆. A numerical example can be found in the supplementary material. With
the estimated T and A, we can obtain J that is still under a residual colour cast (Eq. 1).

2.2 Residual colour-cast removal
We perform a selective chromatic adaptation surfaces without any explicit surface and water-
mass segmentation. To this end, we control the extent of cast removal by modifying the
diagonal matrix D in Eq. 2.

Let the attenuated and the target illuminant in the LMS space be (ρs,γs,βs) and (ρt ,γt ,βt),
respectively. Chromatic adaptation typically remove the colour cast to the same extent for
all pixels, with the diagonal matrix is typically defined as D = diag(ρt/ρs,γt/γs,βt/βs). We
instead use an exponent η ∈ [0,1] to control the removal extent of each pixel, as

D = diag
((

ρt/ρs
)η

,
(
γt/γs

)η
,
(
βt/βs

)η
)
, (10)

where η = 0 corresponding to no cast removal and η = 1 corresponding to full cast removal.
The distinction between surfaces and water-mass is implicitly encoded in the range map z,
that can be derived from the transmission map, as surfaces are at shorter ranges from the
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Input Gray World [7] MaxRGB [23] PCA [9] SeCA (ζ = 0.45)

ζ = 0.25 ζ = 0.50 ζ = 0.75 ζ = 1.00

Figure 4: Comparison with illuminant estimation algorithms and the proposed results with
different ζ (Eq. 12). The cast removal effect increases with ζ , as the attenuated illuminant is
estimated to have a lower intensity. The input is the range-compensated image.

camera than the water-mass. We hence derive a scene adaptation map, ηηη , from the trans-
mission map of J, denoted by T̂, and maximise the removal effect by normalising to [0,1]
as

ηηη =

ln T̂− min
(x,y)∈T̂

ln T̂

max
(x,y)∈T̂

ln T̂− min
(x,y)∈T̂

ln T̂
. (11)

Pixels representing the water mass would have η = 0 and hence no cast removal, whereas
pixels representing surfaces would have η close to 1 and hence most cast removal.

The next step is to estimate the attenuated illuminant E on surfaces. Instead of estimating
the illuminant based on reflectance hypothesis, we note that the background light A is the
attenuated illuminant backscattered along the line of sight [41], i.e. 0 ≤ A ≤ E ≤ 1. We can
hence express E in A as

E = Aζ , ζ ∈ [0,1]. (12)

The larger ζ is, the smaller the intensity of the estimated E and the larger the cast removal.
To adjust for different ambient light environment, we adaptively choose ζ to maximise the
cast removal while ensuring the restored image Ĵ would not lose details due to overexposure.
We define overexposure as too many pixels with high luminance. In our implementation,
we repeatedly search for the largest ζ such that no more than 1% of the restored image’s
pixels exceeds the range of luminance, starting from ζ = 1 and decrease the value by 0.05.
Fig. 4 compares the cast removal result of using E estimated with different algorithms and
proposed cast removal with different ζ . All of the existing illuminant estimation approaches
over-estimate E and could only remove the colour cast partially.

Finally, to deploy Eq. 2 in the LMS space, we first transform J and E to the CIEXYZ
space then use the Bradford chromatic adaptation transform [22] as M. We use the CIE
illuminant D65, that approximates midday light in open-air [11], as the target illuminant.
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3 Validation
We compare the proposed method with 2 physics-based methods, namely Fusion [3], and
Underwater Haze Line (UWHL) [6], that restore the colour appearance along the range as
well as the depth; and 2 neural networks, namely UColor [28] and Cast-GAN [31]. Fusion
first uses the opponent colour theory [18] to compensate for the colour lost along the range.
On this compensated image, 3 different image processing techniques, namely chromatic
adaptation, contrast stretching and image unsharpening, were applied. Fusion then combines
the three images using a saliency map. UWHL derives the transmission map from a prior
that models the distribution of colour in outdoor images, and assumes a uniform background
light. UWHL then applies chromatic adaptation to the entire image. UColor is trained on the
UIEB dataset [25] of underwater image pairs and their (preferred) processed version selected
by a panel of observers, whereas Cast-GAN is trained on computer-graphics images. We first
conduct visual inspection on the restored images, followed by quantitative measures.

Fig. 5 shows restored images of oceanic water. For images with non-uniform back-
ground light (top row), methods that only address uniform background light (Fusion) fail
to restore the colour at the bottom of the image. UWHL produces a darkened image with
its global white balancing. Cast-GAN produces an unnatural water colour (top region) as it
was only trained on images with uniform background light. The estimation of non-uniform
background light (Eq. 9) ensures the restoration at the bottom of the image for those cap-
turing a large depth. In general, Fusion restores the red colour but also tends to introduce
a blue tint and modifies the water colour. UWHL overcompensates for the red colour and
produces unnatural red regions. This is caused by the use of outdoor prior that mis-estimates
the transmission map. Despite being trained on a large dataset, UColor produces images
that have a grey tint and lack contrast (second row). Cast-GAN produces images with high
contrast but significantly darkens most of the surfaces. The proposed SeCA shows consistent
performance in bright and low ambient light that correspond to shallow and deep water, re-
spectively. The adaptive selection of ζ removes the colour cast in both shallow water (third
row) and deeper water (fourth row), where only compensating for the range is insufficient to
restore the colour appearance.

As for quantitative evaluation, it has been widely reported that underwater-specific im-
age quality measures, such as UIQM [33] and UCIQE [40], do not reflect subjective judge-
ment [6, 27, 30]. Following the latest literature [30], we quantify the colour accuracy in the
processed images. Among the only two underwater datasets available for assessing colour
accuracy, we chose Sea-thru [1] over SQUID [6] for the scene diversity. We segmented
and labelled all colour patches individually in 55 colour chart in images with visible water
mass. Of the 55 charts, 41 are captured in bright ambient light (D3 subset) and 14 are in low
ambient light (D5 subset). We measure the colour accuracy, with respect to the reference
chart under D65 illuminant, as CIEDE2000, which measures the perceptual difference in
the CIELab colour space, and angular error, which measures the angular distance between
two colour vectors in the RGB space. The lower the values, the better the colour accuracy.
The range of CIEDE2000 is between 0 and 100. However, a CIEDE2000 value bigger than
10 is meaningless as it is designed for measuring small colour distances. The angular error
ranges between 0° to 180°. Table 1 reports the colour accuracy on the colour charts (sample
shown in third and fourth row of Fig. 5) where all methods have CIEDE2000 higher than
10. We hence do not discuss the accuracy based on CIEDE2000 and focus on the intensity
independent angular error measure. For images in bright ambient light, UWHL achieves
the best accuracy in angular error (15.53°) whereas UColor has the worst accuracy (21.47°),
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Degraded Fusion [3] UWHL [6] UColor [28] Cast-GAN [31] SeCA

Figure 5: Sample images in oceanic water. First row: Image that captures a non-uniform
water colour. Second & third row: Image that captures a uniform water colour in bright
ambient light. Third & fourth rows: Sea-thru image with colour charts [1] used in colour
accuracy validation, captured in bright and low ambient light, respectively.

Amb. Acc. Degraded Fusion [3] UWHL [6] UColor [28] Cast-GAN [31] SeCA

Bright
∆E 29.92 (13.25) 21.06 (8.87) 20.39 (9.58) 25.31 (10.98) 26.08 (12.58) 23.60 (10.04)
Φ 26.38 (13.79) 18.09 (11.66) 15.53 (10.85) 21.47 (12.21) 18.04 (12.35) 18.87 (11.72)

Low
∆E 27.23 (11.36) 21.44 (6.43) 23.59 (8.24) 18.99 (7.11) 16.30 (10.62) 19.43 (7.20)
Φ 32.51 (11.09) 17.96 (9.90) 21.10 (10.85) 18.25 (7.24) 17.81 (12.11) 17.18 (8.08)

Table 1: Colour accuracy measured as CIEDE2000 (∆E) [36] and angular error (Φ, in de-
gree) on the colour charts images captured in different ambient light (Amb.) from Sea-thru
dataset [1]. We report the average and standard deviation (in bracket). The lower the value,
the better the colour accuracy. Best result is bold.

which is half way between that of UWHL and that in the degraded images (26.38°). Fusion,
Cast-GAN and the proposed SeCA have errors between 18.09° to 18.87°. As for images in
low ambient light, SeCA has the best performance, improving the accuracy from the origi-
nal error of 32.51° to 17.18°. To summarise, the proposed SeCA has a stable performance
in bright and low ambient light and outperforms state-of-the-art neural network in terms of
colour accuracy. We also note that the colour accuracy measures only consider the colour
chart but not other area in the image. Obvious artifacts, such as the overly red sand in UWHL
results, are not reflected by the measure. This demonstrates the difficulty of extending con-
ventional measures to underwater image evaluation and also urgent need to develop holistic
measures appropriate for the task.

Finally, we demonstrate the stability of SeCA by applying it to video frames indepen-
dently (Fig. 6). The temporally consistent results, without enforcing any temporal constraint,
indicate SeCA’s applicability to different ambient light conditions. Additional videos are
available in the GitHub repository.
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Figure 6: SeCA restores the videos capturing scenes with non-uniform background light
without any temporal constraint. Left panel shows the degraded video, right panel shows the
restored video. The stability of SeCA is a result of its accurate background light estimation.
Click on the image to start video clip (Adobe Reader only). Additional videos are available
in the GitHub repository.

4 Conclusion

We address two main problems in underwater image restoration, namely the non-uniform
water colour and the removal of residual colour cast from surfaces without distorting the wa-
ter colour. The proposed approach, SeCA, restores the colour degradations along the range
and selectively removes the colour cast on surfaces. We propose a novel approach to handle
both uniform and non-uniform background light to compensate for the colour appearance
degradation along the range. To remove the colour cast along the depth, we estimate the
illuminant on surfaces from the background light. We then derive a scene adaptive map from
the range-compensated image to selectively remove the colour cast on surfaces. SeCA shows
consistent restoration results in images taken in different ambient light and outperforms state-
of-the-art neural networks in colour accuracy. Furthermore, we demonstrated the stability by
extending SeCA directly to video frames without imposing any temporal consistency. SeCA
demonstrated how combining oceanic domain knowledge and image processing techniques
could address physics-based problems and outperform neural networks when accurate, ideal
training images are scarce.

References
[1] D. Akkaynak and T. Treibitz. Sea-thru: A method for removing water from underwa-

ter images. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1682–1691, June 2019.

[2] D. Akkaynak, T. Treibitz, T. Shlesinger, Y. Loya, R. Tamir, and D. Iluz. What is the
space of attenuation coefficients in underwater computer vision? In Proceedings IEEE
conference on Computer Vision and Pattern Recognition, pages 568–577, Honolulu,
HI, USA, July, 2017.

[3] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert. Color balance and fusion
for underwater image enhancement. IEEE Transactions on Image Processing, 27(1):
379–393, Jan. 2018. ISSN 1057-7149.

[4] A. Beer. Bestimmung der absorption des rothen lichts in farbigen flüssigkeiten. An-
nalen der Physik, 162:78–88, January 1852.



LI, CAVALLARO: SELECTIVE COLOUR RESTORATION OF UNDERWATER SURFACES 11

[5] D. Berman, T. Treibitz, and S. Avidan. Diving into haze-lines: Color restoration of
underwater images. In Proceedings of the British Machine Vision Conference, pages
44.1–44.12, Sep. 2017.

[6] D. Berman, D. Levy, S. Avidan, and T. Treibitz. Underwater Single Image Color
Restoration Using Haze-Lines and a New Quantitative Dataset. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 2822–2837, Aug. 2021.

[7] G. Buchsbaum. A spatial processor model for object colour perception. Journal of The
Franklin Institute, 310(1):1–26, July 1980.

[8] N. Carlevaris-Bianco, A. Mohan, and R. M. Eustice. Initial results in underwater single
image dehazing. In OCEANS 2010 MTS/IEEE Seattle, pages 1–8, Sep. 2010.

[9] D. Cheng, D. K. Prasad, and M. S. Brown. Illuminant estimation for color constancy:
why spatial-domain methods work and the role of the color distribution. Journal of the
Optical Society of America A, 31(5):1049–1058, May 2014.

[10] J. Chiang and Y. Chen. Underwater image enhancement: Using wavelength compensa-
tion and image dehazing. IEEE Transactions on Image Processing, 21(4):1756–1769,
Apr. 2012.

[11] Commission Internationale de L’Eclairage. Cie standard llluminants for colorimetry,
Jan. 2008.

[12] P. Drews Jr, E. do Nascimento, F. Moraes, S. Botelho, and M. Campos. Transmission
estimation in underwater single images. In Proceedings of the International Conference
on Computer Vision Workshop, pages 825–830, Dec. 2013.

[13] S. Emberton, L. Chittka, and A. Cavallaro. Underwater image and video dehazing
with pure haze region segmentation. Computer Vision and Image Understanding, 168:
145–156, Mar. 2018.

[14] C. Fabbri, M. J. Islam, and J. Sattar. Enhancing underwater imagery using generative
adversarial networks. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 7159–7165, May 2018.

[15] A. Galdran, D. Pardo, A. Picón, and A. Alvarez-Gila. Automatic Red-Channel under-
water image restoration. Journal of Visual Communication and Image Representation,
26:132–145, 2015.

[16] A. Gijsenij, T. Gevers, and J. van de Weijer. Computational color constancy: Survey
and experiments. IEEE Transactions on Image Processing, 20(9):2475–2489, 2011.

[17] R. W. Gould, R. A. Arnone, and P. M. Martinolich. Spectral dependence of the scat-
tering coefficient in case 1 and case 2 waters. Applied Optics, 38(12):2377–2383, Apr.
1999.
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