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Abstract
Obtaining human per-pixel labels for semantic segmentation is incredibly laborious,

often making labeled dataset construction prohibitively expensive. Here, we endeavor to
overcome this problem with a novel algorithm that combines semi-supervised and active
learning, resulting in the ability to train an effective semantic segmentation algorithm
with significantly lesser labeled data. To do this, we extend the prior state-of-the-art
S4AL algorithm by replacing its mean teacher approach for semi-supervised learning
with a self-training approach that improves learning with noisy labels. We further boost
the neural network’s ability to query useful data by adding a contrastive learning head,
which leads to better understanding of the objects in the scene, and hence, better queries
for active learning. We evaluate our method on CamVid and CityScapes datasets, the
de-facto standards for active learning for semantic segmentation. We achieve more than
95% of the network’s performance on CamVid and CityScapes datasets, utilizing only
12.1% and 15.1% of the labeled data, respectively. We also benchmark our method
across existing stand-alone semi-supervised learning methods on the CityScapes dataset
and achieve superior performance without any bells or whistles.

1 Introduction
Getting labels for supervised learning problems is challenging, especially for semantic seg-
mentation where these labels are needed on a per-pixel level. The most widely used methods
for reducing the need for labels are semi-supervised learning (SSL) and pool-based active
learning (AL). Semi-supervised learning proposes strategies to use the unlabeled dataset
alongside labeled samples, typically by maintaining an exponential moving average of the
network to predict pseudo labels [18, 24, 37], and pool-based active learning queries the most
informative samples within the unlabeled data pool, in terms of pixels, regions, or entire im-
ages, to add to the labeling pool via a predetermined scoring mechanism [4, 13, 29, 31].
Recently, both EquAL [13] and S4AL [29] have pioneered combining active and semi-
supervised learning for semantic segmentation, resulting in significant gains compared to
using either in isolation. However, these methods are complicated - the former relies on en-
forcing consistency in the predictions without accounting for their correctness, and the latter
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Figure 1: An example from the CityScapes dataset for Active learning: (a) Shows the image,
(b) The ground truth labels, (c) The predictions from a network trained only with cross-
entropy loss, and (d) The predictions from a network trained with contrastive representation
learning. The red box highlights the improved predictions in for the train and the nearby
vegetation over standard training with cross-entropy loss.

relies on complex data augmentation schemes for convergence. Here we propose S4AL+,
which greatly simplifies the S4AL method by replacing its mean-teacher framework with
self-training, thereby eliminating the use of complex data augmentations [38, 40].

Most methods for active learning rely on cross-entropy loss for training their networks
[13, 29, 39]. While cross-entropy is a widely used loss function in semantic segmentation,
it operates on a individual pixels of the semantic map and fails to take into consideration
possible cues of similarity and differences in areas throughout the entire image or set of
images to strengthen its learning further (Fig. 1). The computer vision community has
developed several algorithms to address this problem, notably Conditional Random Fields
(CRF) [5], Affinity Nets [23], Region Mutual Information Loss (RMI) [43] and Contrastive
Learning [22, 42]. We hypothesize that boosting cross-entropy performance with any of
these methods can improve the quality of pseudo labels, thereby improving the quality of
queried labeling instances.

In this work, we show how active learning for semantic segmentation can be improved
with a straightforward technique: at each active learning cycle, we produce pseudo labels
for the dataset with the self-training framework [38] and leverage contrastive representa-
tion learning to improve the boundaries between different classes [22]. Our combination
of self-training with contrastive representation learning in S4AL+ enables querying supe-
rior samples for active learning, which results in more efficient learning. While S4AL+
was designed for active learning, we also demonstrate state-of-the-art performance on semi-
supervised learning.

2 Background
Pool-based Active Learning for Semantic Segmentation is a technique for ranking un-
labeled data points on their importance based on machine learning methods including, but
not limited to, consistency [13, 15, 21, 32], diversity [10, 33] and feature level learning
[4, 29, 31, 39]. These frameworks can be further classified based on their approach for
querying the data (image [10, 15, 33, 39], region [4, 13, 21, 29, 32] or pixel [31]). Notably,
EquAL [13], Minimax [10], and S4AL [29] proposed including the unlabeled dataset as part
of the training protocol to achieve better image-level (Minimax) or region-level (EquAL,
S4AL) results. Unlike these approaches, we show that adding a simple contrastive embed-
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ding head and self-training to boost the networks’ quality of pseudo labels is sufficient to
attain state-of-the-art results.

Semi-Supervised Learning for Semantic Segmentation commonly learns representa-
tions using a teacher-student framework [12, 14, 18, 25, 26, 38, 46], and recently, combining
teacher-student with contrastive embeddings [1, 22, 37, 45]. Most teacher-student frame-
works use the mean teacher framework as their foundation [35], wherein a slowly updated
version (teacher) of the continuously updated model (student) predicts reliable pseudo labels
on the unlabeled data points for joint training. The exceptions to this line of approach are
ST++ [40] and USRN [14] which use self-training based learning [38]. These algorithms
complement our work, which differs in two aspects of learning. Unlike ST++, we use pixel-
level (local) metrics instead of image-level (global) metrics for determining the quality of
pseudo labels, and unlike USRN, we use contrastive representation learning to improve the
quality of pseudo labels instead of clustering to improve the data distribution.

Supervised Contrastive Learning stems from adapting the one-to-many contrastive loss
to the many-to-many pipeline for mapping similarities and differences between data points
in the representation space [20]. Multiple frameworks aim to boost the pixel-wise predic-
tions in semantic segmentation by incorporating contrastive learning with memory banks
(prototypes) for supervised learning [36, 42, 44] and semi-supervised learning [1, 37, 45].
Our work employs a much lighter technique, ReCo [22], which continuously updates the
contrastive embeddings per data iteration and achieves a comparative performance to its
memory banks counterparts.

3 Our Active Learning Framework & Algorithm: S4AL+

Active learning methods work with an initial labeled pool (DL, xl) and a relatively larger
unlabeled pool (DU , xu), intending to query instances from DU for labeling. This task is
performed at every active learning cycle (ALT ), whose stopping criteria (ALC) is either pre-
set or determined as the number of cycles required to achieve comparable performance to
supervised learning (DL, DU −→ DL).

We build S4AL+ on the foundations of S4AL [29], self-training [38] and contrastive
representation learning [22]. Following S4AL, we query the instances xu at every ALT at
region level using the average entropy of the network prediction’s in the region. At the end
of every active learning cycle, we query for labeled data from DU by ranking the regions
according to network’s entropy and we account for pseudo labels by considering every pixel
whose prediction confidence is above a fixed threshold. In this manner, the network has
richer labels within the unlabeled pool at the beginning of the next active learning cycle and
does not need to iteratively predict pseudo labels every data iteration [29, 35].

To ensure high quality within the queried regions, we investigate allowing the network
to ‘peep’ into the data within the unlabeled pool by using semi-supervised learning. We
achieve this with two simple adjustments: 1) We train the network with the self-training
framework [35, 38], and 2) We add a contrastive embedding head to strengthen class-wise
representations [22] (Fig. 2). We briefly discuss the motivations and functionality of both
our modifications, before discussing our findings.
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Figure 2: Schematic showing how our modified DeepLabv3+ framework employs con-
trastive representation learning to improve the performance of pseudo labels per learning
cycle, which improves the performance of our active learning framework. Note how road
keys group together (red) and ensure distance from sidewalk (orange), and similarly, bus
keys (yellow) separate from train (green). The confidence in the prediction map highlights
the keys for smart selection during contrastive learning (black arrow).

3.1 Self-training
Motivation. Mean-teacher based approaches for semi-supervised learning, wherein an ex-
ponentially moving average of the student network is used to predict pseudo labels on DU ,
requires complex data augmentations (variants of CutMix [41] or ClassMix [26]) and regu-
larizations to function successfully on semantic segmentation. Multiple research studies in
the areas of semi-supervised learning and active learning ([18, 29, 37]) use modified data
augmentation pipelines to ensure robust pseudo labels. On the contrary, self-training uses a
relatively simple data augmentation scheme, while managing to achieve comparable perfor-
mance.

The self-training pipeline for semi-supervised semantic segmentation can be summarized
in the following steps:

1. Train the network NT on DL
wa with CE,

2. Obtain pseudo labels for DU from NT with a determined threshold,

3. Jointly train DL
wa and DU

sa on NS with CE,

4. NS −→ NT ,

5. Repeat 2 to 4 till convergence,

where NS, NT , wa, sa, CE indicate student network, teacher network, weak data augmenta-
tion, strong data augmentation, and cross-entropy loss respectively. Self-training also relies
on injecting noise into the network for augmentations, which we achieve with Dropout for
MobileNetV2 and Stochastic Depth for the ResNet variants in our framework [16, 19, 30,
34]. This pipeline can be retrofitted for active learning with two minor adjustments. First,
we modify Step 5 to repeat itself every ALT , until we reach the stopping criteria cycle ALC.
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We also query xu within DU for labeling during every iteration of Step 2. As a result, we
obtain the relatively easier set of labels in DU via pseudo labeling and the harder set of labels
in DU via manual annotations at each active learning cycle (ALT ). This results in a larger
portion of information available for the network during the next training phase of the active
learning cycle (ALT ).

3.2 Contrastive Representation Learning
Motivation. We face two challenges when directly applying the framework for semantic
segmentation: 1) for classification, the entire feature representation for the network corre-
sponds to a single image category, and 2) cross-entropy loss works on a per-pixel basis and
ignores the possibility of learning from other pixels in the image (and the batch) to improve
its understanding. Hence, we explore the field of supervised contrastive learning and aug-
ment our network with a contrastive embedding head for learning meaningful representations
(2). Specifically, we adapt the ReCo loss [22] into our training pipeline due to its simplicity
and lower memory overhead.

We modify our network for semantic segmentation by adding another decoder head that
accounts for learning representations and is trained via the ReCo loss (Fig. 2). Assuming
that r indicates the representations obtained in parallel to the network’s class-wise predic-
tions, and C is the total number of classes present in the dataset during the mini-batch under
training, Eqn. 1 summarizes the fundamentals of the ReCo loss [22] as follows:

LReCo = ∑
c∈C

∑
rq∼Rc

q

− log
exp(rq · rc,+

k /τ)

exp(rq · rc,+
k /τ)+∑r−k ∼Rc

k
exp(rq · r−k /τ)

, (1)

where

• Rc
q represents the positive set containing all representations whose ground truth labels

belong to class c,

• rc,+
k represents the positive anchor, which is the mean of rq per class c,

• r−k are all representations within Rc
k, which is the negative key set containing all repre-

sentations whose ground truth label is not class c, and

• τ is the scalar temperature control parameter.

Eqn. 1 accounts for all positive and negative keys present within a mini-batch whose size can
grow exponentially based on the number of images and their resolutions. ReCO alleviates
this problem by constructing a pair-wise similarity graph among the mean representations
of every class (rc,+

k , c ∈ C) and actively sampling for a meaningful set of negative keys r−k
per Rc

q, whose quantity is a tunable hyper-parameter (RCK). This ensures that semantically
different classes, for example, Bus and Vegetation, are rarely sampled as a pair for learning,
while semantically similar classes like Bus and Train are seen more often.

Similarly, rq are chosen based on the threshold RCδs for every corresponding prediction
confidence from the network and a tunable hyper-parameter (RCQ) which determines the
quantity, similar to RCK . RCδs ensures that positive keys belong to areas within the prediction
map which can benefit from representation learning. In this manner, ReCo ensures that
only the most informative sets (both positive and negative) are trained while maintaining a
minimal computation overhead. We replace the CE loss function in Steps 1 and 3 with a
combination of CE and ReCo loss to further boost the network’s learning potential.
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3.3 Summary: S4AL+ vs. Other Methods
Our approach differs from S4AL, and other approaches in the semi-supervised and active
learning literature in three ways: 1) We do not use the mean teacher pipeline to predict
pseudo labels at every mini-batch iteration, in this manner, we save on the training time and
also potential bias from the labels imbalance being carried forward every step, 2) We do not
rely on heavy augmentations like CutMix [41] or ClassMix [26], and 3) We use contrastive
learning with self-training to utilize the unlabeled pool to its maximum potential (Fig. 1).

4 Experiments and Results
Before presenting our results, we first introduce the metrics and datasets used in experiments.

4.1 Datasets, metrics and training protocol
Datasets. We conduct experiments on the CamVid, and CityScapes datasets [3, 8]. CamVid
has a default resolution of 720 × 960, with 11 classes of interest, and CityScapes has a de-
fault resolution of 1024 × 2048, with 11 classes of interest. For active learning, we down-
sample CamVid and CityScapes to 360 × 480 and 688 × 688, respectively, for training
and evaluation, following [29, 39]. For semi-supervised learning, we crop images within
the CityScapes dataset at 768 × 768 for training, and maintain the original resolution for
evaluation, following [18, 37].

Metrics. We evaluate our algorithm’s performance for active learning by measuring the
proportion of additional labeled data required to reach more than 95% performance in terms
of mean IoU (mIoU) on fully supervised learning. We evaluate our algorithm’s performance
for semi-supervised learning by measuring the mIoU achieved using a specific % of fully
supervised data as the labeled data.

Network Architectures. We use MobileNetV2 [30] with a modified stride of 16 as the
backbone for all experiments on active learning (following [29, 39]), except in compari-
son to EquAL [13], wherein we use ResNet-50 with a modified stride of 8. We also use
ResNet-50 [16] and ResNet-101-DeepStem [17], with modified stride of 8, for experiments
on semi-supervised learning as per the protocol in the comparative state-of-the-art. We use
the DeepLabv3+ framework for semantic segmentation throughout all our experiments [6].

Network Optimization. We begin all our experiments with an initial learning rate of
1×10−2 and use the “poly” learning schedule to gradually decrease the learning rate, similar
to [6, 29, 39]. We use SGD for optimization and a weight decay of 0.0001 in all our exper-
iments. We train the networks for 100 epochs on the CamVid and CityScapes datasets for
active learning, and 240 epochs on the CityScapes dataset for semi-supervised learning. For
all data augmentation schemes, we use random application of image resizing and horizontal
flipping as the weak augmentations set (wa), and Gaussian blur, Color Jitter, and CutOut [9]
as the strong augmentations set (sa). We do not create our own splits, but instead use the
data splits provided in individual benchmarks to minimize disparity in our findings. Tables 1
and S1 contain the details of our training procedures on active learning and semi-supervised
learning respectively.
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Figure 3: We demonstrate that our framework, S4AL+, works the best for active learning
on the CamVid (a) and CityScapes (b) datasets. Both graphs show the mIoU improvements
relative to the amount of labeled data utilized in comparison with the previous state-of-the-
art frameworks, DEAL [39] and S4AL [29], and the supervised learning performance.

4.2 Results: Active Learning

We conduct experiments for the full active learning system with the CamVid and CityScapes
datasets with MobileNetV2 encoder and DeepLabv3+ framework. In both cases, we begin
with 10% of the data as our labeled dataset and gradually query for additional labeled data
per active learning cycle ([29, 39]). We query four regions per image of 30 × 30 and 43 ×
43 for each active learning cycle on CamVid and CityScapes, respectively, following [29].
We also assign pseudo labels to the pixels that meet our prediction confidence threshold of
0.7 in every image in the unlabeled data pool.

Fig. 3 shows our results on the CamVid and CityScapes dataset. Our approach achieves
over 95% of the full dataset performance with only 12.1% of the labeled pixel data for
the CamVid dataset, and 15% labeled pixel data on the CityScapes dataset. We observe
a significantly larger boost in the performance during the final active learning cycles, as we
allow the network to train for a longer time, motivated by [2, 29]. Fig. 4 shows the difference
in outputs from S4AL and S4AL+, highlighting the advantage of using contrastive learning
to learn better object features. We refer the reader to Tables S3 and S4 in the supplemental
for a discussion on the class-wise performance on both datasets.

We further compare our system to EquAL [13], another region-based selection method,
that uses a ResNet-50 encoder with DeepLab-v3+ [6, 16]. Starting with 8% labeled data and
a budget of 12% labeled data on the CamVid dataset, our approach achieved an mIOU of
66.4 on CamVid, compared to 63.4 from EquAL and 65.3 from S4AL. When starting with
3.5% data on the CityScapes dataset, our approach achieves a mIoU of 67.5 with only 10%
labeled data, compared to EquAL’s 67.4 with 12% data and S4AL’s 66.7 with 10% data, thus
demonstrating superior performance of our method on multiple training processes.
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Image Ground Truth S4AL S4AL+

Figure 4: Comparison of our framework to the previous state-of-the-art S4AL. The areas of
interest are highlighted and refer to regions wherein our approach supersedes S4AL in terms
of correct pixel prediction.

4.3 Results: Semi-supervised Semantic Segmentation

We compare our approach without the active learning pipeline to semi-supervised learning
methods. Specifically, we do not query for any additional data from the unlabeled pool of
images and only use ground truth for those images that fall in the training set. We train
the network on the labeled training data, assign the pseudo labels based on the prediction
confidence, and retrain the network jointly with labeled and (pseudo-labeled) unlabeled data
twice, before reporting our results.

For semi-supervised Learning, we vary the percentage (%) of labeled images within
training data. Fig. 5(a) shows the performance of our framework in terms of previous state-
of-the-art approaches. We compare S4AL+ with Mean Teacher [35], Cross Consistency
Training (CCT) [27], Cross Pseudo Supervision (CPS) [7], Adaptive Equalized Learning
(AEL) [18] and Unreliable Pseudo Labels (U2PL) [37] which use the ResNet-101-DeepStem
encoder. We observe a slight drop in the performance on the 1/16 labeled data scenario, but
perform at-par or better than other approaches in all other scenarios. Our method is also
superior in terms of efficiency as 1) it does not use multiple sets of encoders and decoders
(like CCT and CPS), 2) does not complex memory bank mechanisms to actively sample for
long tail distribution classes (MT, AEL and U2PL), and 3) does not actively obtain pseudo
labels at every data iteration (MT, AEL and U2PL). We refer the readers to Table S2 in the
supplemental for in-depth results on the CityScapes dataset.
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Table 1: Summary of all Active learning experiments on CamVid and CityScapes datasets.
LD and ULD indicate the percentage of labeled data and unlabeled data respectively. We
observe that using 1:2 labeled to unlabeled image ratio, and training for longer epochs, on
the final active learning cycle, result in superior gains with respect to mIoU on both datasets.

Dataset Experiment Epochs
Batch
Size
(Labeled)

Batch
Size
(Unlabeled)

Iterations
Per Epoch

Contrastive
Representation
Learning?

mIoU

CamVid 10% LD 100 4 - 50 58.42
10% LD 100 4 - 50 Yes 60.11
10% LD, ULD 100 2 2 100 Yes 60.50
10% LD, ULD 100 2 4 100 Yes 60.92
10% LD, 2.1% LD, ULD 100 2 4 100 Yes 61.80
10% LD, 2.1% LD, ULD 150 2 4 100 Yes 62.65

CityScapes 10% LD 100 4 - 100 54.84
10% LD 100 4 - 100 Yes 55.45
10% LD, ULD 100 2 2 300 Yes 56.31
10% LD, ULD 100 2 4 300 Yes 57.12
10% LD, 1.3% LD, ULD 100 2 4 300 Yes 58.14
10% LD, 2.6% LD, ULD 100 2 4 300 Yes 59.85
10% LD, 3.8% LD, ULD 100 2 4 300 Yes 60.52
10% LD, 5.1% LD, ULD 100 2 4 300 Yes 61.47
10% LD, 5.1% LD, ULD 200 2 4 300 Yes 63.60

5 Discussion
Our results enable us to answer two questions:

1. Does self-training help the case of active learning? Yes. As a stand-alone adjustment,
self-training boosts the initial mIoU by 1.8 points on the CamVid dataset and 1.2 points
on the CityScapes dataset when using the MobileNetV2 encoder.

2. Does representation learning help the case of active learning? Yes again. We ob-
serve a boost of 2 points in the initial mIoU for the CamVid dataset and 0.8 points on
the CityScapes dataset with the MobileNetV2 encoder. We also verify this for semi-
supervised learning in Fig. 5(b) and Table S2, wherein we use variants of a stronger
ResNet encoder.

6 Conclusion
We propose a solution for improving active learning for semantic segmentation motivated by
the desire to eliminate dependency on data augmentation schemes that involve randomness
to ensure robust pseudo labels. We achieve this by formulating active learning as a step-
wise semi-supervised learning problem, using self-training compared to the popular teacher-
student-based framework. We enrich this framework with a representation learning head that
ensures the network can maximize its learning potential. While both our components seem
reasonably straightforward, we emphasize that our goal was not to create something entirely
new but to develop a solution from the existing literature. S4AL+ is a strong, but elegant,
method for active and semi-supervised learning, with potential for improvement (Fig. 6), as
it achieves state-of-the-art results in both domains.
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Figure 5: (a) Comparison of our framework in terms of mIoU to the previous state-of-the-
art approaches for semi-supervised learning on CityScapes dataset. (b) Comparison of im-
provements gained by using contrastive learning (ReCo [22]) for semi-supervised learning
on CityScapes dataset.

Image Ground Truth S4AL S4AL+ S4AL+
(SSL_R101D)

Figure 6: Knowledge distillation? S4AL+ still makes incorrect predictions under cases of
extra-similar object appearances. However, we show that this is a limitation of the encoder,
MobileNetV2, by comparing its outputs post active learning to the stand-alone output of the
same approach trained under the semi-supervised learning framework (with a similar amount
of initial labeled data) and the significantly more powerful ResNet-101-DeepStem encoder.
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