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Table 3: Key differences between Gradient Inversion and Feature Inversion (Ours)
Gradient Inversion [31, 36, 60, 91, 98] Feature Inversion (Ours)

Scenario Federated learning (training) Split computing (inference)
Input Weights + Gradients Weights + Features
Goal Exact image recovery from gradients Exact image recovery from features

Insight Gradients encode private information via
inversion

Features encode private information via even faster inversion

A Additional Related Work
Autoencoder. Model inversion is also related to autoencoders [44, 84] given a similar func-
tionality of target and inversion models, to an encoder-decoder pair. However, the encoder
and decoder in an autoencoder are trained jointly with a vast amount of data in an end-
to-end manner. In our case, only an individually pre-trained target model is accessible.
Aligning with the previous finding of layer-wise training of autoencoder (e.g., deep belief
network [9, 43]), we also find layer-wise training beneficial for inversion model training as
detailed in Sec. 3.1.
Invertible Neural Networks. Invertible neural networks (INNs) [8, 21, 50] are a family
of neural networks which is theoretically invertible due to their special architectures and
weights. For instance, i-RevNet [46] uses carefully planned convolution, reshuffling, and
partitioning procedures to ensure inversion. i-ResNet [7] constrains weights with Lipschitz
condition. In conclusion, INNs are inapplicable to standard model architectures since they
depend on uncommon architectures and regularizations.

B Implementation Details

B.1 Training Strategy
DCI divides the computation of a feed-forward neural network into multiple parts and inverts
the computational flow progressively. One straightforward strategy is to sequentially opti-
mize each individual inversion module F−1

k , beginning with the first layer F−1
1 . We observe

that as we progress deeper into the model, the inversion error will increase. To address this
accumulation issue, we use a more potent training strategy. After optimizing a particular
inversion module F−1

k , we take into account all previous inversion modules and fine-tune all
layers up to k, i.e., F−1

1 ◦ · · · ◦F−1
k−1 ◦F

−1
k , with the same loss Lk to reduce the accumulated

inversion error. When k = 1, this fine-tuning is skipped because there is no inversion model
prior to F−1

1 .

B.2 Inversion Models
ResNet-18. The first four sequential layers in ResNet models are convolution, BN, ReLU,
and max pooling layers, and we invert the sequence of the first four layers as a whole block.
Each inversion module mimics the architecture of its corresponding target counterpart but
with reversed input and output dimensions. For a BasicBlock (left) in ResNet-18, its
inversion module (right) is shown as below in Fig. 10.

ResNet-50. We break the overall ResNet-50 architecture into five sub-networks and invert
one sub-network each time. Similar to ResNet-18, the first sub-network is the initial block.
The other four sub-networks consist of 3,4,6,3 repeats of Bottleneck respectively [38].
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Figure 10: (Left) A BasicBlock in ResNet-18 (Right) Corresponding inversion module
for the BasicaBlock.

C Additional Inversion Results
Lossy Final Fully-Connected Layer. In the main manuscript, we show that the recov-
ered images from RepVGG feature embeddings after 21 convolution layers preserve original
semantic and visual attributes. However, we find that information in the feature embed-
dings decays rapidly through the last two layers in RepVGG. This may indicate that class-
invariant information is quickly filtered out towards the end of the model while the initial
stages focus on feature extraction, which is aligned with prior observations in transfer learn-
ing [22, 57, 62, 92, 100] and self-supervised learning [16, 33, 39]. We visualize the above
findings in Fig. 11. One can still recognize the class of inverted images after the penultimate
(i.e., the 22-th convolution) layer. However, if we invert features after the final (i.e., the
fully-connected) layer, only the predominant color is recognizable.

(a) Original images
(b) Inversion from the
last convolution layer

(c) Inversion from the
final full-connected layer

Figure 11: Results of inversion from (b) the penultimate layer (i.e., the last convolution
layer), and (c) the final layer (i.e., the final full-connected layer)

D Ablation Studies
Effectiveness of Synthetic Data. We study how well synthetic data may be used to optimize
our inversion modules. For a sanity check, we re-perform the experiment in Fig. 3 using real
data from ImageNet training set rather than the synthetic data. We also vary the number of
synthetic data used for optimization. In Fig. 12, we show that using more (real or synthetic)
data samples improves the inversion quality. For instance, in the first column of Fig. 12,
the inverted images can reveal the parrot’s tiny eyes when 10K (real or synthetic) images
are used for the optimization of inversion modules. However, we also discover that when
there are more than 10K (real or synthetic) samples, the improvement of inversion quality is
limited. In addition, we demonstrate that DCI achieves a comparable inversion quality when
using synthetic data as opposed to using real data. However, due to their sensitivity to data
distribution change, as illustrated in Fig. 8, prior generative inversion approaches [69, 94]
cannot efficiently use synthetic data.
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Real images x from the ImageNet validation set.Real
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fake 10000

Real 10000

fake 1000

Inverted images by inversion model trained on 1K real data. (LPIPS ↓ = 0.462)

Real

Real 1000

fake 10000

Real 10000

fake 1000
Inverted images by inversion model trained on 1K synthetic data. (LPIPS ↓ = 0.481)
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fake 10000
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fake 1000

Inverted images by inversion model trained on 10K real data. (LPIPS ↓ = 0.430)

Real

Real 1000

fake 10000

Real 10000

fake 1000

Inverted images by inversion model trained on 10K synthetic data. (LPIPS ↓ = 0.443)

Figure 12: Comparison of different data settings. Our method achieves a comparable inver-
sion quality using synthetic data compared to using real data.
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Real images x from the ImageNet validation set.

Inverted images from ResNet-50’s (supervised) features after 35 conv. layers.

Figure 13: More inversion results on ResNet-50 without any real data. Our method general-
izes well on different types of images.
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Real images x from the ImageNet validation set.

Inverted images from RepVGG-A0 features after 21 conv. layers.

Figure 14: More inversion results on RepVGG-A0 without any real data. Our method gen-
eralizes well on different types of images.


