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Video Moment Retrieval (VMR)
Ø A task to locate a temporal moment (start & end points) in a long and

untrimmed video according to a natural language query sentence.
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Existing methods (two approaches):
1) Fully-Supervised VMR
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2) Weakly-Supervised VMR
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§ Have temporal labels in the training

§ Harder to annotate
§ Ambiguity-prone and sensitive to

subjective bias
§ Poor generalisation

§ No temporal labels in the training

§ Harder to derive semantically plausible
video-text correspondences

§ Overpass existing available temporal
boundary labels; lead to waste

Hybrid-Learning Video Moment Retrieval
v Overall Idea
Ø Optimise weakly-supervised retrieval learning of visual-textual 

correlations in a target domain by sharing knowledge on video-text 
alignment learned from fully-supervised auxiliary learning in a source 
domain.
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Weakly-supervised retrieval learning

vMain Contributions
a) A new approach to VMR: Hybrid-Learning VMR
b) A multiplE branch Video-text Alignment model (EVA) to transfer

temporal label information as knowledge across domains/tasks
c) Competitive results against the state-of-the-art methods
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Multi-Branch Hybrid-Learning
v Weakly-Supervised Retrieval Branch

1) Within-modal self-attention module

2) Weakly-supervised retrieval loss

v Fully-Supervised Retrieval Branch
1) Cross-modal attention module (sharing parameters)

2) Fully-supervised retrieval loss
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3.1 Multi-Branch Hybrid-Learning

The multi-branch hybrid-learning network is designed to augment a weakly-supervised re-

trieval branch on target domain unlabelled data by an additional fully-supervised auxiliary

branch given a labelled auxiliary dataset.
Weakly-supervised retrieval branch. By exploring Transformer [38], EVA employs sev-
eral attention modules to establish within- or cross-modality connections. Given Y 2 Rly⇥d

and X 2 Rlx⇥d , the attention unit Att(Y,X) attends Y using X as follows:

R(Y,X) = softmax(YW
q>

W
k
X
>/
p

d), Att(Y,X) = FC(Y +R(Y,X)XW
v>), (1)

where the softmax(·) is the softmax normalisation by each row in the given matrix, and
{W

q;W k;W v} 2 R3⇥d⇥d are three trainable weight vectors. A fully-connected layer FC(·)
has the same dimension after projection. Thus, the within-modal self-attention modules for
video and text modalities are:

V  Att
V (V,V ), Q Att

Q(Q,Q), (2)

which focus on exploring the within-modal dependencies by learning the correlations be-
tween pairs of elements in a video or a text sentence. We employ two sets of self-attention
modules for video and text sequentially. Between them, the video is divided from clips into
proposals V = {pk}

np

k=1 with a sliding window strategy [22, 31]. Then we fuse the query
Q and proposal feature pk to construct a joint video-text representation jk [15] and acquire
matching score Pm(pk|Q) by a fully connected layer FC(·) and a sigmoid function s(·):

Pm(pk|Q) = s(FC( jk)), jk = (pk +max(Q))k(pk⌦max(Q))kFC(pkkmax(Q)), (3)

where +,⌦, k are the element-wise matrix addition, multiplication, and concatenation. Sym-
bol max(·) denotes max-pooling to generate sentence-level query features by aggregating all
the words in a query. The video-level matching score Pm(V |Q) is obtained by the max-
pooling of the proposal-level video-text matching score matrix {Pm(pk|Q)}np

k=1. For each
positive pair (V,Q), two negative counterparts (V�,Q) and (V,Q�) are sampled by replac-
ing either V or Q with V

� or Q
� from the mini-batch following [18]. A binary cross-entropy

(BCE) loss is then used for weakly-supervised learning:

Lw =2⇤ (� logPm(V |Q))� log(1�Pm(V |Q�))� log(1�Pm(V
�|Q)). (4)

Fully-supervised auxiliary branch. In this branch, we want to proactively explore existing
temporally labelled video data from elsewhere to augment the weakly-supervised learning
in the target domain. To project features to spaces with the same dimension as those in the
weakly-supervised branch, and to boost the intra-modal contextual interaction in the source
domain auxiliary dataset, we use the same attention unit design as in the weakly-supervised
retrieval branch. Per Eq. (1), a cross-modal attention module is deployed to learn the video-
text interaction by focusing on the most matched parts between the two modality spaces:

V  Att
Q!V (V,Q), Q Att

V!Q(Q,V ), (5)

and shared parameters to weakly-supervised branch, so as to promote more accurate cross-
modal interaction in weakly-supervised retrieval learning. Then we compute video-query
similarity score Sv�q = V

f
Q

f

m, where Q
f

m is the modularized query vector from Q [21, 43],
and use two 1D convolution filters to predict the start and end boundary in the score curves,
computed by Ps/e = s(conv1Ds/e(Sv�q)), and Ps, Pe denote the start and end probabilities.
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The fully-supervised retrieval loss is a weighted combination of a retrieval loss L f

r and the
video-level BCE loss per Eq. (4):

L f = lrL f

r
+L f

bce
, L f

r
= H(Ps, I

f

s
)+H(Pe, I

f

e
), (6)

where H is the cross-entropy function, (I f

s , I
f

e ) are the one-hot ground-truth labels for start
and end indices (i f

s , i
f

e ), and lr is a trade-off hyper-parameter.

3.2 Multi-Modal Feature Alignment across Tasks and Domains

As discussed earlier, there are apparent domain distribution shifts and data characteristic
differences among heterogeneous datasets in both video and text modalities, which bring
challenges when utilising several datasets simultaneously. Here our goal is to bridge the
gaps across tasks and domains, and to transfer the video-text matching relationships learned
from the fully-supervised source domain to the weakly-labelled target domain effectively.

3.2.1 Modality Feature Alignment Constraint

Considering the differences in video and text modalities, diverse datasets may represent the
same semantic information in different styles. The apparent domain gaps in both natural
language and videos among datasets make any cross-modal interaction likely to be subject
to domain biases. This will introduce noise to the moment-level temporal labels given by the
external fully-labelled dataset when shared with the weakly-supervised learning process in a
different domain. For more accurate cross-modal matching and more effective precise label
information sharing, we propose to align the features both before and after the cross-modal
attention module in both modalities respectively. Specifically, by quantising and minimising
the distance of the distributions between the source and target domains, we constrain the
learning of the source and target domain to let the feature spaces for video and text modali-
ties share more common areas between the two domains. After aligning the modality spaces
on both input and output sides of the shared cross-modal attention module, the video-text
correlations learned on the fully-labelled auxiliary dataset is more generalisable and com-
prehensible to benefit the weakly-supervised retrieval. Motivated by [42], we use the maxi-
mum mean discrepancy (MMD) [17] to measure the distribution’s distance and constrain the
intermediate features’ distributions between source and target domain in both video and text
modalities by minimising it. Given source domain samples D

s = {xxxi}ns

i=1 2 Rns⇥d and target
domain samples D

t = {yyy j}
nt

j=1 2 Rnt⇥d , the MMD is calculated as :

M(Ds,Dt)2 =
1
n2

s

ns

Â
i=1

ns

Â
j=1

K(xxxi,xxx j)+
1
n

2
t

nt

Â
i=1

nt

Â
j=1

K(yyyi,yyy j)�
2

nsnt

ns

Â
i=1

nt

Â
j=1

K(xxxi,yyy j), (7)

where K is the radial basis function kernel [35]. To align the modality features in both
branches, we calculate the MMD loss both before ((V f

b
,V w

b
),(Q f

b
,Qw

b
)) and after ((V f

a ,V w

a
),

(Q f

a ,Qw

a
)) the cross-modal attention module between the fully-supervised auxiliary branch

and the weakly-supervised retrieval branch in visual and text modalities respectively:

Lalign = (lvidM(V f

b
,V w

b
)2 +M(Q f

b
,Qw

b
)2)+(lvidM(V f

a
,V w

a
)2 +M(Q f

a
,Qw

a
)2), (8)

where lvid in Eq. (8) is a trade-off hyper-parameter between video and query modalities.

Multi-Modal Feature Alignment across Tasks and Domains
v Modality Feature Alignment Constraint

v Joint-Modal Domain Classifier
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3.2.2 Joint-Modal Domain Classifier

Given that different modality features have their own discriminative characteristics, we ex-
plore an adversarial strategy to bridge the domain gaps whilst keeping per-task discrimina-
tiveness, with the constraints of retrieval losses (Lw,L f ) in both branches. Here, we use a
joint-modal domain classifier with the gradient reversal layer (GRL) [14, 34] to tackle the
problem. The joint-modal domain classifier is designed to map the video feature V and
query feature Q to a scalar domain label labeld 2 {0,1}. The domain label is designed to
distinguish whether the network input video and query are from the dataset with temporal
boundaries (source domain) or the dataset without temporal boundaries (target domain). The
mapping can be expressed as labeld = Gd(·). Firstly, we concatenate the video feature V

and query feature Q after max-pooling to generate a video-text joint feature J. And we apply
another MMD constraint on the V and Q. Then J is fed into the domain classifier Gd(·)
which contains two fully-connected and a softmax layers:

Gd(J) = softmax(FC1(FC2(J))). (9)

For the purpose of optimising the model to get the features V and Q domain-invariant, we
take the gradient reversal layer before the domain classifier Gd(·). The binary cross-entropy
loss function is then adopted as the joint-modal domain classifier loss:

Ldomain =�log(1�Gd(J
f ))� logGd(J

w), (10)

where J
f ,Jw denote the joint features in the two branches respectively.

3.3 Model Training and Testing

In each training iteration, we randomly sample n videos with a pair of queries from the
target temporal-unlabelled dataset and the same amount samples with time annotations from
the external temporal-labelled dataset, as a mini-batch. The overall loss is computed by:

L= Lw +l fL f +lalignLalign �ldomainLdomain, (11)

where l f ,lalign and ldomain are hyper-parameters for each loss. In test, only the weakly-
supervised retrieval branch is deployed.

4 Experimental Results

Dataset #video #moment avg. len. (sec) avg. len. (wrd)
train val test video moment query

Anet [20] 19290 37417 17505/17031 - 117.6 36.2 14.8
Charades [15] 6672 12408 - 3720 30.6 8.1 7.2
TVR [21] 21793 87175 10895 5445 76.2 9.1 13.4

Table 1: Statistics of VMR datasets.

Datasets. In experiments, we em-
ployed three commonly used VMR
datasets: ActivityNet-Captions [4,
20], Charades-STA [15] and newly re-
leased TVR [21]. The statistics of
them are shown in Table 1.

For more extensive comparisons
and to align with other weakly-supervised methods, we use Charades and Anet as the tar-
get datasets for weakly-supervised retrieval learning and comparative evaluation. For hybrid
learning, we use TVR for the auxiliary training dataset with full temporal labelling, consid-
ering its large number of samples to cover greater linguistic diversity and precise video-text
information, which is shown in Table 1.

W. CAI, J. HUANG, S. GONG: HYBRID-LEARNING VIDEO MOMENT RETRIEVAL 7

3.2.2 Joint-Modal Domain Classifier

Given that different modality features have their own discriminative characteristics, we ex-
plore an adversarial strategy to bridge the domain gaps whilst keeping per-task discrimina-
tiveness, with the constraints of retrieval losses (Lw,L f ) in both branches. Here, we use a
joint-modal domain classifier with the gradient reversal layer (GRL) [14, 34] to tackle the
problem. The joint-modal domain classifier is designed to map the video feature V and
query feature Q to a scalar domain label labeld 2 {0,1}. The domain label is designed to
distinguish whether the network input video and query are from the dataset with temporal
boundaries (source domain) or the dataset without temporal boundaries (target domain). The
mapping can be expressed as labeld = Gd(·). Firstly, we concatenate the video feature V

and query feature Q after max-pooling to generate a video-text joint feature J. And we apply
another MMD constraint on the V and Q. Then J is fed into the domain classifier Gd(·)
which contains two fully-connected and a softmax layers:

Gd(J) = softmax(FC1(FC2(J))). (9)

For the purpose of optimising the model to get the features V and Q domain-invariant, we
take the gradient reversal layer before the domain classifier Gd(·). The binary cross-entropy
loss function is then adopted as the joint-modal domain classifier loss:

Ldomain =�log(1�Gd(J
f ))� logGd(J

w), (10)

where J
f ,Jw denote the joint features in the two branches respectively.

3.3 Model Training and Testing

In each training iteration, we randomly sample n videos with a pair of queries from the
target temporal-unlabelled dataset and the same amount samples with time annotations from
the external temporal-labelled dataset, as a mini-batch. The overall loss is computed by:

L= Lw +l fL f +lalignLalign �ldomainLdomain, (11)

where l f ,lalign and ldomain are hyper-parameters for each loss. In test, only the weakly-
supervised retrieval branch is deployed.

4 Experimental Results

Dataset #video #moment avg. len. (sec) avg. len. (wrd)
train val test video moment query

Anet [20] 19290 37417 17505/17031 - 117.6 36.2 14.8
Charades [15] 6672 12408 - 3720 30.6 8.1 7.2
TVR [21] 21793 87175 10895 5445 76.2 9.1 13.4

Table 1: Statistics of VMR datasets.

Datasets. In experiments, we em-
ployed three commonly used VMR
datasets: ActivityNet-Captions [4,
20], Charades-STA [15] and newly re-
leased TVR [21]. The statistics of
them are shown in Table 1.

For more extensive comparisons
and to align with other weakly-supervised methods, we use Charades and Anet as the tar-
get datasets for weakly-supervised retrieval learning and comparative evaluation. For hybrid
learning, we use TVR for the auxiliary training dataset with full temporal labelling, consid-
ering its large number of samples to cover greater linguistic diversity and precise video-text
information, which is shown in Table 1.

W. CAI, J. HUANG, S. GONG: HYBRID-LEARNING VIDEO MOMENT RETRIEVAL 7

3.2.2 Joint-Modal Domain Classifier

Given that different modality features have their own discriminative characteristics, we ex-
plore an adversarial strategy to bridge the domain gaps whilst keeping per-task discrimina-
tiveness, with the constraints of retrieval losses (Lw,L f ) in both branches. Here, we use a
joint-modal domain classifier with the gradient reversal layer (GRL) [14, 34] to tackle the
problem. The joint-modal domain classifier is designed to map the video feature V and
query feature Q to a scalar domain label labeld 2 {0,1}. The domain label is designed to
distinguish whether the network input video and query are from the dataset with temporal
boundaries (source domain) or the dataset without temporal boundaries (target domain). The
mapping can be expressed as labeld = Gd(·). Firstly, we concatenate the video feature V

and query feature Q after max-pooling to generate a video-text joint feature J. And we apply
another MMD constraint on the V and Q. Then J is fed into the domain classifier Gd(·)
which contains two fully-connected and a softmax layers:

Gd(J) = softmax(FC1(FC2(J))). (9)

For the purpose of optimising the model to get the features V and Q domain-invariant, we
take the gradient reversal layer before the domain classifier Gd(·). The binary cross-entropy
loss function is then adopted as the joint-modal domain classifier loss:

Ldomain =�log(1�Gd(J
f ))� logGd(J

w), (10)

where J
f ,Jw denote the joint features in the two branches respectively.

3.3 Model Training and Testing

In each training iteration, we randomly sample n videos with a pair of queries from the
target temporal-unlabelled dataset and the same amount samples with time annotations from
the external temporal-labelled dataset, as a mini-batch. The overall loss is computed by:

L= Lw +l fL f +lalignLalign �ldomainLdomain, (11)

where l f ,lalign and ldomain are hyper-parameters for each loss. In test, only the weakly-
supervised retrieval branch is deployed.

4 Experimental Results

Dataset #video #moment avg. len. (sec) avg. len. (wrd)
train val test video moment query

Anet [20] 19290 37417 17505/17031 - 117.6 36.2 14.8
Charades [15] 6672 12408 - 3720 30.6 8.1 7.2
TVR [21] 21793 87175 10895 5445 76.2 9.1 13.4

Table 1: Statistics of VMR datasets.

Datasets. In experiments, we em-
ployed three commonly used VMR
datasets: ActivityNet-Captions [4,
20], Charades-STA [15] and newly re-
leased TVR [21]. The statistics of
them are shown in Table 1.

For more extensive comparisons
and to align with other weakly-supervised methods, we use Charades and Anet as the tar-
get datasets for weakly-supervised retrieval learning and comparative evaluation. For hybrid
learning, we use TVR for the auxiliary training dataset with full temporal labelling, consid-
ering its large number of samples to cover greater linguistic diversity and precise video-text
information, which is shown in Table 1.

Overall loss
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Method Source Target Charades Anet
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.1 IoU=0.3 IoU=0.5

2D-TAN [48] 3 7 14.65 4.30 1.26 40.16 28.71 17.29
XML [21] 3 7 32.49 18.27 8.87 31.78 17.18 9.27
MMN [39] 3 7 11.45 3.06 0.86 42.19 24.57 13.09
EVA 3 3 62.01 40.21 18.22 74.09 49.89 29.43

Table 2: Performance comparisons between EVA hybrid-learning and state-of-the-art fully-
supervised VMR methods tested on Charades and Anet.

Method Source Target IoU=0.3 IoU=0.5 IoU=0.7
TGA [32] 7 3 29.68 17.04 6.93
SCN [22] 7 3 42.96 23.58 9.97
LoGAN [37] 7 3 51.67 34.68 14.54
BAR [40] 7 3 44.97 27.04 12.23
RTBPN [49] 7 3 60.04 32.36 13.24
VLANet [31] 7 3 45.24 31.83 14.17
CCL [50] 7 3 - 33.21 15.68
CRM [18] 7 3 53.66 34.76 16.37
EVA 3 3 62.01 40.21 18.22

(a) Evaluated on Charades

Method Source Target Split IoU=0.1 IoU=0.3 IoU=0.5
WS-DEC [13] 7 3 val_1 62.71 41.98 23.34
WSLLN [16] 7 3 val_1 75.4 42.8 22.7
BAR [40] 7 3 val_1 - 49.03 30.73
CRM [18] 7 3 val_1 76.66 51.17 31.67

EVA 3 3 val_1 70.79 46.23 28.00
SCN [22] 7 3 val_2 71.48 47.23 29.22
RTBPN [49] 7 3 val_2 73.73 49.77 29.63
CCL [50] 7 3 val_2 - 50.12 31.07
CRM [18] 7 3 val_2 81.61 55.26 32.19

EVA 3 3 val_2 74.09 49.89 29.43

(b) Evaluated on Anet
Table 3: Comparisons with state-of-the-art weakly-supervised VMR methods.

Evaluation protocol. Following prior works [13, 40], we use IoU = m, to calculate the
percentage of the top predicted moment having Intersection over Union (IoU) larger than m.
Implementation details. We used C3D features after PCA (500-D) for per-frame repre-
sentations in Anet, I3D (1024-D) for Charades, and either C3D or I3D for TVR depend-
ing on the features used on the other domain. GloVe embeddings [33] were used as the
word-level feature representations (300-D). The hidden features’ dimension d for both video
clips and word representations were 256-D. For the weakly-supervised retrieval branch, the
sliding windows stride was 8 and the window sizes were {8,16,32,64,128} in Anet and
{8,12,20,32,64} in Charades. The model was trained 50 epochs by Adam optimiser with
a batch size of 64 and learning rate of 1e� 4. The trade-off hyper-parameters were set as
l f

r = 0.1,l f = 1,lvid = 0.8,ldomain = 0.01,lalign = 1.

4.1 Comparisons with the State-of-the-art

Comparisons with fully-supervised methods. The comparative evaluations on EVA in
Table 2 are designed for a practical scenario which does not assume the target new data was
drawn from the identical distributions as the one used to train the model. Fully-supervised
models rely heavily on manual temporal labels and lack the design to utilise or finetune
on other datasets when temporal boundary labels are not available. In this case, the fully-
supervised methods were trained with the TVR dataset with full temporal annotations in
model training, and evaluated on Charades and Anet val_2 respectively. The ‘Source’ and
‘Target’ columns indicate the access of temporal-labelled and unlabelled data in the training
stage. Table 2 shows all fully-supervised methods trained on a specific dataset suffer a
serious performance degradation when deployed to a new domain in test, demonstrating
their poor generalisation abilities. Our proposed EVA outperforms all these methods in all
metrics. Compared to EVA, all these fully-supervised methods are not designed for and
cannot simultaneously learn jointly from cross-domain hybrid labelling information given
by both fully labelled and weakly labelled data in different domains. Our new multi-branch
hybrid learning model demonstrates compellingly its ability to utilise and exploit effectively
cross-domain different training labels.
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Ø Comparisons on OOD splits
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Comparisons with weakly-supervised approaches. Table 3 compares EVA with the state-
of-the-art weakly-supervised models. All these methods have no access to temporal labels
in training. It is evident that EVA performs well on Charades which shows the ability to in-
troduce precise video-text interaction information from an external heterogeneous temporal-
labelled dataset. In Anet, some powerful weakly-supervised methods will maintain better
performance. Our analysis is that some of these methods are likely to have overfitted a train-
ing dataset. The video-query pairs from prevailing datasets suffer annotation biases [45],
where for instance the moments will fall into several specific time locations in both train and
test splits. Due to this, a model trained with such a dataset may only make retrieval by se-
lecting a moment from the frequency statistics of the bias-based training split and still have
satisfactory performance on the test set which shares similarly biased distribution.

Dataset Method Source Target IoU=0.3 IoU=0.5 IoU=0.7

Anet
WS-DEC [13] 7 3 17.00 7.17 1.82
CRM [18] 7 3 22.77 10.31 -
EVA 3 3 23.11 11.29 4.32

Charades WS-DEC [13] 7 3 35.86 23.67 8.27
EVA 3 3 47.83 31.71 12.76

Table 4: EVA hybrid-learning VMR results on
ActivityNet-CD and Charades-CD OOD splits.

To test our assumption on weakly-
supervised model overfitting, we fur-
ther carried out experiments on distri-
bution changed splits for ActivityNet-
CD and Charades-CD [45] and evalu-
ated on the out-of-distribution (OOD)
test splits. Table 4 shows the results
under the discounted recall metric [45],
comparing EVA with the best perform-
ing state-of-the-art weakly-supervised models WS-DEC and CRM. It is evident that EVA
outperforms both methods, showing that EVA has great multi-modal understanding by ex-
ploiting and sharing the precise video-text interaction information from an external dataset
of different labels in a different domain context.

4.2 Discussion and Analysis

Ablation study. We examined the effectiveness of each proposed component in Table 5.
‘WR’ and ‘FA’ are abbreviations of the weakly-supervised retrieval and fully-supervised
auxiliary branches, whilst the ‘Align’ and ‘Domain’ mean the modality feature alignment
constraint and joint-modal domain classifier. In the ‘WR + fine-tune’ row, we pre-trained the
WR branch on the source dataset with temporal labels and fine-tuned it on the target dataset
without labels, and in ‘WR + unlabelled source’, the WR branch was trained jointly without
any temporal labels in both the source and target domain training data. Our WR branch
was trained with a temporal-unlabelled target dataset only as of the baseline, and all other
mentioned methods have the access to both target and source datasets. The results show
that simply having an external temporal-labelled dataset gains limited improvement in some
metrics but not all. Critically, the performance is limited due to the multi-modal domain gaps.
The modality feature alignment constraint we introduced in each modality and the joint-
modal domain classifier proposed in EVA to align the single-modal and joint-modal features
respectively not only have their own benefits, but also when they are both adopted together
by aligning the features both in each modality and cross-modality, the model performance
benefited more.
Effect of module sharing. To promote precise cross-modal matching information inter-
action in two branches, we shared the parameters of the cross-modal attention modules and
maintain the independence of self-attention modules to focusing on each domain intra-modal
interaction. We investigated its effect by comparing the prediction recall of EVA constructed
with different sharing parts on Anet val_2 split in Table 6, displaying its advantages in video-
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Method mIoU IoU=0.1 IoU=0.3 IoU=0.5
WR 32.96 71.48 48.06 28.74
WR + fine-tune 33.14 72.59 48.86 28.21
WR + unlabelled source 33.01 72.18 48.18 28.01
WR + FA 33.11 71.62 48.46 28.56
WR + FA + Align 33.83 73.35 49.60 28.80
WR + FA + Domain 33.66 73.14 49.32 28.92
WR + FA + Align + Domain 34.27 74.09 49.89 29.43

Table 5: Component ablation study of
EVA on TVR (source) and Anet (target).

Shared Module(s) mIoU IoU=0.1 IoU=0.3 IoU=0.5
No Sharing 33.85 73.40 49.73 29.21
Self1 + Self2 34.08 73.63 49.84 29.33
Self1 + Cross 34.00 73.92 49.21 28.91
Self2 + Cross 33.88 73.81 49.42 28.80
Self1 + Self2 + Cross 33.70 73.92 49.06 28.30
Cross 34.27 74.09 49.89 29.43

Table 6: Effects of module sharing.

Model Train Dataset (t,a)!c (t,a)!a
Source Target mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.1 IoU=0.3 IoU=0.5

WR 7 3 22.68 34.48 17.84 6.23 31.50 69.62 46.05 26.23
EVA 3 3 24.18 36.91 22.53 8.79 34.04 73.76 49.80 28.75

(t,c)!c (t,c)!a
mIoU IoU=0.3 IoU=0.5 IoU=0.7 mIoU IoU=0.1 IoU=0.3 IoU=0.5

WR 7 3 39.74 61.72 38.60 16.63 17.94 45.04 24.47 12.35
EVA 3 3 40.08 62.01 40.21 18.22 22.04 52.05 31.81 16.57

Table 7: Model generalisation evaluation on EVA hybrid-learning that utilises different
datasets in training and test.

text knowledge sharing. ‘Self1’, ‘Self2’, and ‘Cross’ refer to the first, second self-attention
module, and cross-modal attention module respectively.
Generalisation to unseen data. To explore the generalisation ability of EVA, we try to use
different datasets in training and evaluation stages. Specifically, we trained EVA on TVR,
Anet and tested on Charades ((t,a)!c), and then trained on TVR, Charades and tested on
Anet val_2 ((t,c)!a). All the videos are processed by I3D to extract the features. The results
in Table 7 show that EVA not only has improvements on the target dataset, but also improves
performance in all metrics over the baseline (WR) on a heterogeneous dataset of a different
domain, which reveals that bringing an extra temporal-labelled dataset in our method can
largely avoid the model from converging to some bias-based distributions and carry more
useful cross-modal information for more precise moment localisation.

5 Conclusion

In this work, we introduced a new hybrid-learning approach to VMR by formulating a novel
multiple branch video-text alignment framework. EVA explores fine-grained cross-modal
matching interaction information with a shared cross-modal attention module between two
branches. EVA also employs a modality feature alignment constraint and joint-modal do-
main classifier to align the features in individual and multiple modalities so to preserve their
per-task discriminativeness. Experiments show the advantages of EVA over existing methods
and demonstrate the effectiveness of our hybrid learning model in improving cross-domain
weakly-supervised learning.
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