

Hybrid-Learning Video Moment Retrieval across Multi-Domain Labels

BMVC

Shaogang Gong¹ Weitong Cai¹ Jiabo Huang¹

¹Queen Mary University of London

Background

Video Moment Retrieval (VMR)

 \succ A task to locate a temporal moment (start & end points) in a long and untrimmed *video* according to a natural language *query* sentence.

Existing methods (two approaches):

1) Fully-Supervised VMR

Query

Ross sighs and shakes his head while looking forlorn.

Video + Temporal labels $\{t_s, t_e\}$

- Have temporal labels in the training
- Harder to annotate
- Ambiguity-prone and sensitive to subjective bias
- Poor generalisation

Ideas and Contributions

Hybrid-Learning Video Moment Retrieval

- ✤ Overall Idea
- Optimise weakly-supervised retrieval learning of visual-textual correlations in a target domain by sharing knowledge on video-text alignment learned from fully-supervised auxiliary learning in a source domain.

Weakly-Supervised VMR 2)

person they throw their clothes on to a nearby desk. Video w/o Temporal labels

- No temporal labels in the training
- Harder to derive semantically plausible video-text correspondences
- Overpass existing available temporal boundary labels; lead to waste

Fully-supervised auxiliary learning

Weakly-supervised retrieval learning

Main Contributions

a) A new approach to VMR: Hybrid-Learning VMR b) A multiplE branch Video-text Alignment model (EVA) to transfer temporal label information as knowledge across domains/tasks c) Competitive results against the state-of-the-art methods

Method

Multi-Branch Hybrid-Learning

- Weakly-Supervised Retrieval Branch
- 1) Within-modal self-attention module

 $\mathcal{R}(Y,X) = \operatorname{softmax}(YW^{q^{\top}}W^{k}X^{\top}/\sqrt{d}), \quad Att(Y,X) = \operatorname{FC}(Y + \mathcal{R}(Y,X)XW^{\nu^{\top}}),$ $V \leftarrow Att^V(V, V), \quad Q \leftarrow Att^Q(Q, Q),$

2) Weakly-supervised retrieval loss

 $\mathcal{L}_{w} = 2 * (-\log P_{m}(V|Q)) - \log(1 - P_{m}(V|Q^{-})) - \log(1 - P_{m}(V^{-}|Q)).$

- Fully-Supervised Retrieval Branch
- 1) Cross-modal attention module (sharing parameters)

 $V \leftarrow Att^{Q \rightarrow V}(V,Q), \quad Q \leftarrow Att^{V \rightarrow Q}(Q,V),$

2) Fully-supervised retrieval loss

 $\mathcal{L}_f = \lambda_r \mathcal{L}_r^f + \mathcal{L}_{hce}^f, \quad \mathcal{L}_r^f = H(P_s, I_s^f) + H(P_e, I_e^f),$

Multi-Modal Feature Alignment across Tasks and Domains

Modality Feature Alignment Constraint

 $M(D^{s}, D^{t})^{2} = \frac{1}{n_{s}^{2}} \sum_{i=1}^{n_{s}} \sum_{i=1}^{n_{s}} K(\mathbf{x}_{i}, \mathbf{x}_{j}) + \frac{1}{n_{t}^{2}} \sum_{i=1}^{n_{t}} \sum_{i=1}^{n_{t}} K(\mathbf{y}_{i}, \mathbf{y}_{j}) - \frac{2}{n_{s}n_{t}} \sum_{i=1}^{n_{s}} \sum_{i=1}^{n_{t}} K(\mathbf{x}_{i}, \mathbf{y}_{j}),$

 $\mathcal{L}_{align} = (\lambda_{vid} M(V_h^f, V_h^w)^2 + M(Q_h^f, Q_h^w)^2) + (\lambda_{vid} M(V_a^f, V_a^w)^2 + M(Q_a^f, Q_a^w)^2),$

Joint-Modal Domain Classifier

 $G_d(J) = \operatorname{softmax}(\operatorname{FC}_1(\operatorname{FC}_2(J))).$

 $\mathcal{L}_{domain} = -\log(1 - G_d(J^f)) - \log G_d(J^w),$

Overall loss

 $\mathcal{L} = \mathcal{L}_{w} + \lambda_{f} \mathcal{L}_{f} + \lambda_{align} \mathcal{L}_{align} - \lambda_{domain} \mathcal{L}_{domain},$

Experiments

> Comparisons with fully-supervised methods

Method	Source	Target	Charades			Anet		
			IoU=0.3	IoU=0.5	IoU=0.7	IoU=0.1	IoU=0.3	IoU=0.5
2D-TAN [48]		X	14.65	4.30	1.26	40.16	28.71	17.29
XML [21]		X	32.49	18.27	8.87	31.78	17.18	9.27
MMN [39]		X	11.45	3.06	0.86	42.19	24.57	13.09
EVA	\checkmark	 ✓ 	62.01	40.21	18.22	74.09	49.89	29.43

> Component ablation study

Method	mIoU	IoU=0.1	IoU=0.3	IoU=0.5
WR	32.96	71.48	48.06	28.74
WR + fine-tune	33.14	72.59	48.86	28.21
WR + unlabelled source	33.01	72.18	48.18	28.01
WR + FA	33.11	71.62	48.46	28.56
WR + FA + Align	33.83	73.35	49.60	28.80
WR + FA + Domain	33.66	73.14	49.32	28.92
WR + FA + Align + Domain	34.27	74.09	49.89	29.43

> Comparisons with weakly-supervised methods

Method	Source	Target	IoU=0.3	IoU=0.5	IoU=0.7
TGA [32]	×	\checkmark	29.68	17.04	6.93
SCN [22]	×	\checkmark	42.96	23.58	9.97
LoGAN [37]	×	\checkmark	51.67	34.68	14.54
BAR [40]	×	\checkmark	44.97	27.04	12.23
RTBPN [49]	×	\checkmark	60.04	32.36	13.24
VLANet [31]	×	\checkmark	45.24	31.83	14.17
CCL [<mark>50</mark>]	×	\checkmark	-	33.21	15.68
CRM [18]	×	\checkmark	53.66	34.76	16.37
EVA	√	\checkmark	62.01	40.21	18.22

(a) Evaluated on Charades

Method Source Target Split IoU=0.1 IoU=0.3 IoU=0.5 WS-DEC [13] X 23.34 |val_1| 62.71 | 41.98 WSLLN [16] 75.4 42.8 22.7 val_1 \checkmark BAR [40] X 49.03 30.73 val_1 31.67 CRM [18] val_1 **76.66** 51.17 EVA 46.23 28.00 val_1 70.79 \checkmark SCN [22] 29.22 47.23 |val_2| 71.48 RTBPN [49] val_2 73.73 49.77 29.63 X CCL [50] 50.12 31.07 X val_2 |val_2| **81.61** 55.26 32.19 CRM [18] val_2 74.09 49.89 29.43 EVA \checkmark

(b) Evaluated on Anet

> Comparisons on OOD splits

Dataset	Method	Source	Target	IoU=0.3	IoU=0.5	IoU=0.7
Anet	WS-DEC [13]	×	\checkmark	17.00	7.17	1.82
	CRM [18]	×	\checkmark	22.77	10.31	-
	EVA	√	\checkmark	23.11	11.29	4.32
Charades	WS-DEC [13]	×	\checkmark	35.86	23.67	8.27
	EVA	√	\checkmark	47.83	31.71	12.76