

You Only Need 90K Parameters to Adapt Light: a Light Weight

Transformer for Image Enhancement and Exposure Correction Table 1: Experimental results on LOL (V1 & V2) [64] datasets, best and second best result

is self-supervised learning method.

are marked in red and blue respectively, noted here [22] is non-deep learning method and [2

SSIM↑ PSNR↑ SSIM↑ FLOPs(G).

18.82 0.771

22.86 0.818

Exposure Correction Result

Table 3: Experimental results on exposure correction dataset [2]. Note here HE and

19.80 0.813 0.841 (T) 1.981 (T)

1.365 (P)

0.602 (P)

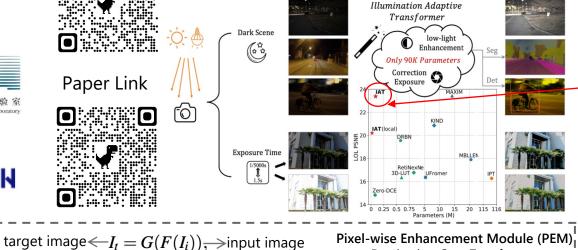
nanghai Artificial Intelligence Laborator

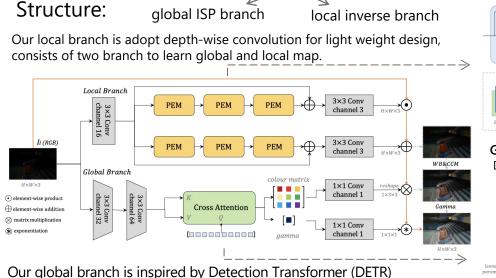
Model

Ziteng Cui¹, Kunchang Li², Lin Gu^{3,1*}, Shenghan Su⁴, Peng Gao², Zhengkai Jiang⁵, Yu Qiao², Tatsuya Harada^{1,3}

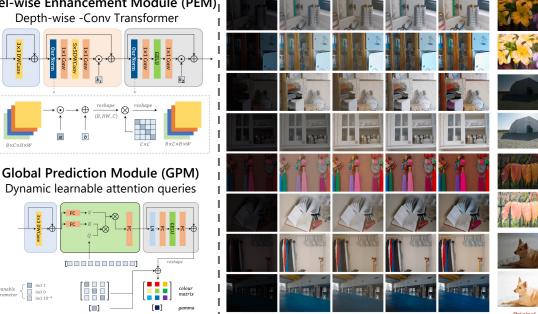
- 1. The University of Tokyo 2. Shanghai Al Laboratory 3. RIKEN AIP
 - 4. Shanghai Jiao Tong University 5. TenCent YouTu Lab

Illumination-Adaptive-Transformer


Only 90K Parameters! 0.004s inference speed per image! State-Of-The-Art!


Several tasks:

- (1) Low-light enhancement
- (2) Exposure correction
- (3) Low-light object detection & Low-light semantic segmentation
- (4) Various-light condition object detection



Github Link

Using attention queries to dynamic control ISP-related parameters

