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Abstract

Face anti-spoofing aims to counter facial presentation attacks and heavily relies on
identifying live/spoof discriminative features. In this paper, we propose a novel Learn-
able Descriptive Convolution (LDC) to expand the representation capacity of vanilla con-
volution and especially focus on learning intrinsic textural features of live and spoof
faces. In terms of LDC, we develop a convolutional network LDCNet for face anti-
spoofing. In addition, to facilitate cross-domain detection, we introduce two strate-
gies, including triplet mining and dual-attention supervision, to constrain the model
training. We adopt triple mining to encourage LDCNet to learn to narrow the domain
gap, and adopt the dual-attention supervision to guide LDCNet on learning discrimi-
native features from regional live and spoof attentions. With the collaborative supervi-
sion of the two strategies, we conduct extensive experiments and show that LDCNet
achieves promising results on many benchmark datasets. The codes are available at
https://github.com/huiyu8794/LDCNet.

1 Introduction
Facial recognition and identification systems have penetrated our daily lives to quickly fa-
cilitate many applications, such as cellphone unlock, authentication of on-line banking, and
identification of criminals. However, extensive applications of facial recognition also incur
potential security risks and require specific techniques to support the application security.
Therefore, many face anti-spoofing methods [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18,
19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
have been developed to counter facial presentation attacks, such as Print Attack (i.e., printing
a face on a paper) and Replay Attack (i.e., replaying a face video on digital devices).

Earlier methods [3, 9, 17, 24, 26, 40] developed their live/spoof classifiers in terms of
handcrafted feature descriptors, such as local binary pattern (LBP) [3, 9, 24], histogram
of gradient (HoG) [17, 40], and scale-invariant feature transform (SIFT) [26]. Recent deep
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learning-based methods [1, 4, 5, 7, 8, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 27, 28, 30, 31, 33,
34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47] directly learned the features and/or the classifier
from labeled training data and have achieved significant improvement over earlier methods.
Convolutional neural networks (CNNs), with shared-weight architecture and vanilla convo-
lutions, have achieved great success in many computer vision tasks. By stacking locally
smoothing filters, CNNs successfully suppress image noises in different spatial scales and
encode task-representative features for different applications. However, face anti-spoofing,
unlike other computer vision tasks, deals with highly similar characteristics between live
and spoof faces and requires a more delicate representation on characterizing the intrinsic
features relating to face presentation attacks. For example, grid artifacts and moiré patterns
are considered as distinctive textural features for detecting print attacks and replay attacks,
respectively. Therefore, several extensions of vanilla CNNs, such as Sobel Convolution
[37], Local Binary Convolution [15], and Central Difference Convolution [42], have been
proposed to learn the textural features of face presentation attacks. These extensions, by in-
cluding pre-defined local descriptors into vanilla convolution, have been shown to improve
the representation capacity of vanilla convolution.

Another challenge in face anti-spoofing relates to the cross-domain issue. Because dif-
ferent benchmark datasets are independently collected and have various distributions, the
model trained on one dataset often fails to perform well on the others. Several methods
[5, 12, 13, 19, 30, 31, 34, 35, 38] have been proposed to address this cross-domain issue
in face anti-spoofing problem. Moreover, because most benchmark datasets only provide
binary live/spoof ground-truth labels to indicate whether an image is live or spoof, there is
a lack of fine-grained supervision to guide the model learning. Therefore, many methods
included external supervision, e.g., facial depth [5, 12, 21, 30, 31, 35, 42], rPPG signal
[12, 18, 20, 21], and reflection [16, 41, 45, 47], as an auxiliary guide to help the models on
learning discriminative features. These external auxiliary supervisions, though effective on
specific scenarios, heavily rely on the availability and quality of the adopted information.

To address the above issues, we propose a Learnable Descriptive Convolutional Net-
work (LDCNet) for face anti-spoofing and design a novel Learnable Descriptive Convolution
(LDC) through a learnable local descriptor to increase the representation capacity of vanilla
convolutions. The proposed LDC not only enables CNNs to adaptively learn the intrinsic
textural features of live and spoof faces but also exhibits a generalized formulation of the
other vanilla extensions [15, 37, 42]. To tackle the issues of cross-domain gap and the lack
of fine-grained supervision, we further include two strategies to collaboratively supervise
LDCNet, including triple mining and dual-attention supervision. We adopt the idea of triple
mining to narrow the domain gap and to encourage LDCNet to learn domain-invariant fea-
tures. Moreover, we introduce a dual-attention supervision, including a live attention and a
spoof attention, to constrain LDCNet to focus on regional attentions in learning live/spoof
discriminative features.

Our contributions are summarized as follows:
• We design a novel Learnable Descriptive Convolution (LDC) to adaptively learn the deli-
cate textural features in face anti-spoofing and show that LDC is a generalized operation of
other vanilla extensions.
• We incorporate the strategies of triplet mining and dual-attention supervision to collabora-
tively supervise LDCNet to learn domain-invariant and live/spoof discriminative features.
• Extensive experiments demonstrate effectiveness of the proposed method.
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(a) (b)
Figure 1: Illustration of the difference between (a) the vanilla convolution, and (b) the pro-
posed Learnable Descriptive convolution (LDC). ⊙ and ∗ denote the element-wise multipli-
cation and the convolution operation, respectively.

2 Proposed Method

In Section 2.1, we first present the proposed Learnable Descriptive Convolution (LDC) on
learning intrinsic textural features of face presentation attacks and then develop a LDC-based
convolutional network (LDCNet) to address the face anti-spoofing problem. In Section 2.2
and Section 2.3, we introduce using triplet mining and dual-attention supervision to collabo-
ratively supervise LDCNet towards learning domain-invariant and live/spoof discriminative
features. Section 2.4 summarizes the total loss of LDCNet and describes the detection score
for live/spoof classification in the inference stage.

2.1 Learnable Descriptive Convolutional Network

2.1.1 Review of Vanilla Convolution and Central Difference Convolution

Vanilla 2D spatial convolution is essential to CNNs for learning representative features for
different tasks. The 2D convolution is a linear operation involving the multiplication of the
filter w (i.e., a set of weights) with the input f in a local neighborhood R by,

g(p) = w(p)∗ f (p) = ∑
pn∈R

w(pn) · f (p+ pn), (1)

where ∗ denotes the convolution operation, p is the pixel of current location, pn is the location
of neighboring pixels in R, and g is the output feature map. Figure 1 (a) shows an example
of a 3×3 convolution operation in R= {(−1,−1),(−1,0), ...,(0,1),(1,1)}.

However, the representation capacity of vanilla convolution is not equally effective for
all the computer vision tasks. In particular, as noted in [42], the weighted summation in
vanilla convolution tends to overly smooth sharp details and diminish the discriminative tex-
tural features in face anti-spoofing. Therefore, several variations, such as Sobel Convolution
[37], Local Binary Convolution [15], and Central Difference Convolution [42], have been
proposed by involving local descriptors into vanilla convolution to better focus on edge or
textural details. In [42], the authors proposed a Central Difference Convolution, by combin-
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(a) (b) (c)
Figure 2: Examples of facial images and their low-level feature maps obtained by the
proposed Learnable Descriptive Convolution. (a) Live images, (b) spoof images of print
attacks, and (c) spoof images of replay attacks.

ing vanilla convolution with a weighted summation of central difference in R by,

g(p) = (1−θ) ∑
pn∈R

w(pn) · f (p+ pn)︸ ︷︷ ︸
vanilla convolution

+θ ∑
pn∈R

w(pn) · ( f (p+ pn)− f (p))︸ ︷︷ ︸
central difference convolution

, (2)

where θ ∈ [0,1] is a hyperparameter. When θ = 0, Equation (2) degenerates to the vanilla
convolution in Equation (1).

2.1.2 Learnable Descriptive Convolution

Although the methods [15, 37, 42] incorporated different local descriptors to extend the
vanilla convolution, they all adopted predefined local descriptors and still kept all the learning
capabilities in the convolution kernel w. That is, the local descriptors in [15, 37, 42] are fixed
and not updated along with the model training. We argue that, the predefined and unlearnable
descriptors are inflexible to capture various textural features and that their applicability in
face anti-spoof is limited. Therefore, instead of predetermining the descriptor, we propose a
novel Learnable Descriptive Convolution (LDC) by incorporating a learnable descriptor m′

into vanilla convolution by,

g(p) = w(p)∗ ( f (p)⊙m′(p)), (3)

where ⊙ denotes the element-wise multiplication. To simplify the description, we assume
the local neighborhood R, the convolution kernel w, and the learnable descriptor m′ are of
size 3×3. The descriptor m′ is composed of a base matrix 13×3 and a learnable matrix m as,

m′ = (1− ε) ·13×3 + ε ·m, (4)

where ε is a learnable parameter and is used to balance the contribution of the two matrices.
As shown in Figure 1 (b), the base matrix 13×3 is an all-ones matrix and is included to
preserve the vanilla convolution function in LDC; and the 3×3 matrix m is initialized with
13×3 and then is jointly updated with ε during the training stage. By substituting Equation
(4) into Equation (3), we rewrite the proposed LDC as,

g(p) = w(p)∗ ( f (p)⊙ ((1− ε) ·13×3(p)+ ε ·m(p)))

= (1− ε) · (w(p)∗ f (p))+ ε · (w(p)∗ ( f (p)⊙m(p)) (5)

= (1− ε) ∑
pn∈R

w(pn) · f (p+ pn)︸ ︷︷ ︸
vanilla convolution

+ε ∑
pn∈R

w(pn) · ( f (p+ pn) ·m(pn))︸ ︷︷ ︸
learnable descriptive convolution

.
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Figure 3: The proposed LDCNet, which consists of a feature extractor FE, a classifier CF,
a live attention estimator LE and a spoof attention estimator SE.

Equation (5) shows that the proposed LDC is a weighted combination of vanilla convolu-
tion and the learnable descriptive convolution with m, and that the two convolutions share the
same kernel w. Note that, the proposed LDC exhibits a good generalization of other convo-
lutions [15, 37, 42]. When ε = 0, LDC apparently becomes vanilla convolution. In addition,
by comparing Equation (5) with Equation (2), we show that Central Difference Convolution
[42] is a special case of LDC when the matrix m in Equation (5) is

m = ε ·13×3 +

0 0 0
0 − 1

w(p) ∑
pn∈R

w(pn) 0

0 0 0

 . (6)

Figure 2 gives several examples of live and spoof faces and their feature maps obtained
by LDC. These features maps show that LDC not only well preserves the textural details of
facial images but also highlights the distinctive characteristics of spoof faces. As shown in
Figures 2 (b) and (c), the grid artifacts and moiré patterns of print attacks and replay attacks
are clearly visible in the corresponding feature maps.

2.1.3 LDCNet

With the proposed LDC, we develop a Learnable Descriptive Convolutional Network (LD-
CNet) to address the face anti-spoofing problem. As shown in Figure 3, LDCNet consists of
a feature extractor FE, a live/spoof classifier CF, and two attention estimators, including a
live attention estimator LE and a spoof attention estimator SE. Note that, instead of vanilla
convolution, we adopt the proposed LDC in all the convolutional layers of FE, LE and SE.

We define the liveness loss Ll for classifying live and spoof faces by,

Ll =−∑
∀x

ylog(CF(FE(x)))+(1− y)log(1−CF(FE(x))), (7)

where x is an input image, and y is its binary liveness label, i.e., y = 1 for live images and
y = 0 for spoof images.
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Figure 4: Triplet mining for learning domain-invariant features in LDCNet. Note that, al-
though this illustration was inspired from [13], which focuses on learning robust live/spoof
decision boundary, our goal is different from [13] and aims to learn domain-invariant fea-
tures. Hence, we devise the triplet loss to separate data of the three classes (i.e., live, print
attack, and replay attack) while aggregating the data from different domains but having the
same class label together.

2.2 Triplet Mining

Next, we adopt triplet mining in LDCNet to constrain the feature extractor FE to learn
domain-invariant features. We assume each benchmark dataset indicates one domain. Note
that, because images under different presentation attacks have different characteristics, here
we do not assume all the spoof images belong to one class. Instead, we assign spoof images
of different attacks into different classes. For example, in Figure 4, the training data are
labeled with 3 classes, i.e., live, print attack, and replay attack.

We define the triplet loss Ltrip to enforce the inter-class pairs to be distant from intra-class
pairs by least a margin α by,

Ltrip = ∑
∀xa

i

(∥FE(xa
i )−FE(xp

i )∥
2
2 −∥FE(xa

i )−FE(xn
i )∥2

2 +α), (8)

where xa
i is an anchor input, xp

i is a positive input of the same class as xa
i , and xn

i is a negative
input of a different class from xa

i . By minimizing the triplet loss, we encourage LDCNet
to narrow the distance between different domains during the model training so as to learn
domain-invariant features.

2.3 Dual Attention Supervision

As mentioned in Sec. 1, the binary ground labels only indicate whether an image is live
or spoof but give no regional indication about where the attacked regions locate. To tackle
this issue, we propose a dual-attention supervision, including a live attention and a spoof
attention, to offer LDCNet additional guidance with fine-grained information.

Therefore, we include two attention estimators LE and SE in LDCNet to further en-
courage the feature extractor FE to learn from regional live and spoof attentions. The two
attention estimators LE and SE are jointly trained with LDCNet but need further indications
to constrain their learning. Instead of including external auxiliary information, we propose
using the well-known Class Activation Map [29, 49] to generate the quasi-ground truth for
LE and SE. We pre-train the feature extractor FE and the live/spoof classifier CF to obtain
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Total loss LT [O,C,I]→ M [O,M,I]→ C [O,C,M]→ I [I,C,M]→ O

Ll Ltrip
Ldual HTER AUC HTER AUC HTER AUC HTER AUCLAl LAs

✓ 15.24 90.43 18.33 89.45 17.14 89.84 18.22 88.37
✓ ✓ 13.10 91.98 16.67 90.98 13.87 92.84 16.19 90.56
✓ ✓ ✓ 11.43 93.68 13.07 93.89 10.64 94.92 14.32 92.54
✓ ✓ ✓ 12.38 93.14 14.72 92.57 12.71 94.13 14.91 91.39
✓ ✓ ✓ ✓ 9.29 96.86 12.00 95.67 9.43 95.02 13.51 93.68

Table 1: Ablation study on all the cross-domain protocols, using different combinations of
loss terms. The evaluation metrics are HTER(%) ↓ and AUC(%) ↑.

Method HTER AUC
Vanilla Convolution [25] 16.65 84.19

Sobel Convolution [37] (CVPR 20) 14.96 90.00
Local Binary Convolution [15] (CVPR 17) 15.10 90.50

Central Difference Convolution [42] (TPAMI 20) 14.94 91.33
Ours: LDC 13.51 93.68

Table 2: Ablation study on [I,C,M]→ O using different convolution kernels. The evaluation
metrics are HTER(%) ↓ and AUC(%) ↑.

the live activation map Al and the spoof activation map As of an input image x by,

Al = Grad-CAM(CF(FE(x));y = 1),and

As = Grad-CAM(CF(FE(x));y = 0),
(9)

where Grad-CAM indicates the class activation operation [29].
Next, by referring to Al and As as the live and spoof attentions, we define the dual

attention loss Ldual by,

Ldual = LAl +LAs , (10)

which incorporates the live attention loss LAl and the spoof attention loss LAs by,

LAl = ||Al − Āl ||22;LAs = ||As − Ās||22, (11)

where Āl and Ās are the estimated attentions by LE and SE, respectively. Note that, we
only use the original activation maps Al of live images and As of spoof images in the model
training, but set all the values of Al of spoof image and As of live images into zeros.

2.4 Total Loss and Live/Spoof Classification
Finally, we include the liveness loss Ll , the triplet loss Ltrip, and the dual attention loss Ldual
to define the total loss by:

LT = Ll +βLtrip + γLdual , (12)

where β and γ are the weight factors. In all our experiments, we empirically set β = 0.1 and
γ = 0.004.

In the inference stage, we follow previous face anti-spoofing methods [12, 21, 22, 31, 37,
42] to measure the detection score in terms of the classification output. For each test image
x, we define the detection score sls by,

sls = CF(FE(x)). (13)
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3 Experiments

3.1 Experimental Setting
3.1.1 Datasets and Evaluation Metrics

We evaluate our method on the face anti-spoofing databases: OULU-NPU [4] (denoted
as O), MSU-MFSD [39] (denoted as M), CASIA-MFSD [48] (denoted as C), and Idiap
Replay-Attack [6] (denoted as I). To have a fair comparison with previous methods [5, 12,
13, 19, 30, 31, 34, 35, 38], we follow the same settings in [30] to conduct cross-testing
on these datasets and report the results using the same evaluation metrics, including Attack
Presentation Classification Error Rate (APCER) [32], Bona Fide Presentation Classification
Error Rate (BPCER) [32], Average Classification Error Rate (ACER) [32], Half Total Error
Rate (HTER) [2], and Area Under Curve (AUC).

3.1.2 Network Architecture and Implementation Details

We develop LDCNet by using Res-18 [10] as the network backbone for the feature extrac-
tor FE, and using three convolutional blocks to build the two estimators LE and SE. Each
convolutional block consists of convolutional layers, batch normalization layers and ReLU
activation functions. The feature maps of the last three layers of FE are resized to 32 ×
32 and are then concatenated together for LE and SE. Note that, we replace all the vanilla
convolutions in FE, LE, and SE with the proposed LDC.

We implement the proposed method by Pytorch. To pre-train FE and CF, we set a
constant learning rate of 5e−4 with Adam optimizer up to 100 epochs. As to LDCNet, we
set a constant learning rate of 1e−4 with Adam optimizer to train FE, LE, SE and CF up to
200 epochs.

3.2 Ablation Study
3.2.1 Comparison between Different Losses

In Table 1, we compare using different combinations of loss terms to train LDCNet and test
on all the cross-domain protocols. When including Ltrip with Ll , we show that the triplet

Method [O,C,I]→ M [O,M,I]→ C [O,C,M]→ I [I,C,M]→ O
HTER AUC HTER AUC HTER AUC HTER AUC

MADDG [30] (CVPR 19) 17.69 88.06 24.50 84.51 22.19 84.99 27.89 80.02
DR-MD-Net [34] (CVPR 20) 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47

SSDG-M [13] (CVPR 20) 16.67 90.47 23.11 85.45 18.21 94.61 25.17 81.83
RFM [31] (AAAI 20) 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16

RAEDFL [12] (ACPR 21) 16.67 87.93 17.78 86.11 14.64 85.64 18.06 90.04
ANRL [19] (ACM MM 21) 10.83 96.75 17.83 89.26 16.03 91.04 15.67 91.90

D2AM [5] (AAAI 21) 15.43 91.22 12.70 95.66 20.98 85.58 15.27 90.87
SDA [35] (AAAI 21) 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30

CDCN-PS [43] (TBBIS 21) 20.42 87.43 18.25 86.76 19.55 86.38 15.76 92.43
FAS-DR-BC(MT) [27] (TPAMI 22) 11.67 93.09 18.44 89.67 11.93 94.95 16.23 91.18

LMFD-PAD [7] (WACV 22) 10.48 94.55 12.50 94.17 18.49 84.72 12.41 94.95
SSAN-M [38] (CVPR 22) 10.42 94.76 16.47 90.81 14.00 94.58 19.51 88.17
SSAN-R [38] (CVPR 22) 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63

Ours 9.29 96.86 12.00 95.67 9.43 95.02 13.51 93.68
Table 3: Comparison of cross-domain face presentation attack detection. The evaluation
metrics are HTER(%) ↓ and AUC(%) ↑.
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Method [M,I]→ C [M,I]→ O
HTER AUC HTER AUC

MADDG [30] (CVPR 19) 41.02 64.33 39.35 65.10
DR-MD-Net [34] (CVPR 20) 31.67 75.23 34.02 72.65

SSDG-M [13] (CVPR 20) 31.89 71.29 36.01 66.88
RFM [31] (AAAI 20) 36.34 67.52 29.12 72.61

RAEDFL [12] (ACPR 21) 31.11 72.63 29.23 74.62
ANRL [19] (ACM MM 21) 31.06 72.12 30.73 74.10

D2AM [5] (AAAI 21) 32.65 72.04 27.70 75.36
SDA [35] (AAAI 21) 32.17 72.79 28.90 73.33

SSAN-M [38] (CVPR 22) 30.00 76.20 29.44 76.62
Ours 22.22 82.87 21.54 86.06

Table 4: Comparison of limited cross-domain testing on [M, I]→ C and [M, I]→ O. The
evaluation metrics are HTER(%) ↓ and AUC(%) ↑.

(a) (b)
Figure 5: Activation maps of (a) live and (b) spoof images from high-level features on
different datasets.

mining effectively encourages LDCNet to learn domain-invariant features and improve the
performance over the case of Ll . When including Ll +Ltrip with either LAl or LAs , we
do have improved performance over the case of Ll +Ltrip and verify the effectiveness of
each single attention. When further including Ldual , we show that the two attentions indeed
offer LDCNet a fine-grained supervision to learn discriminative features and achieve the best
performance. These results verify that each of the proposed components steadily contributes
to the overall performance.

3.2.2 Comparison between Different Convolutions

In Table 2, we compare using Sobel Convolution [37], Local Binary Convolution [15], Cen-
tral Difference Convolution [42], and the proposed LDC to replace the vanilla convolution
in FE, LE and SE and use the same total loss LT to train the model and test on the protocol
[I,C,M]→ O. The results show that LDC outperforms the others and verify that the proposed
learnable descriptor better adapts to various textural details than the pre-defined descriptors.
We believe this learnable characteristic of LDC indeed facilitates the model to learn intrinsic
features for face anti-spoofing.

3.3 Experimental Comparisons on Cross- and Intra-Domain Testing

First, we follow the setting of [30] to conduct cross-domain testing, i.e., using the model
trained on training domains to detect face presentation attacks on unseen domain. Table
3 shows the detection performance of four cross-domain testing protocols on the datasets
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Method P. ACPER BPCER ACER P. ACPER BPCER ACER
SGTD [37] (CVPR 20)

1

2.0 0.0 1.0

3

3.2±2.0 2.2±1.4 2.7±0.6
BCN [41] (ECCV 20) 0.0 1.6 0.8 2.8±2.4 2.3±2.8 2.5±1.1

Disentangle [34] (CVPR 20) 1.7 0.8 1.3 2.8±2.2 1.7±2.6 2.2±2.2
RAEDFL [12] (ACPR 21) 1.67 0.00 0.83 1.38±1.78 0.28±0.68 0.83±0.86
Structure [45] (IJCB 21) 1.3 0.0 0.6 2.3±2.7 1.4±2.6 1.9±1.6

Ours 0.0 0.0 0.0 4.55±4.55 0.58±0.91 2.57±2.67
SGTD [37] (CVPR 20)

2

2.5 1.3 1.9

4

6.7±7.5 3.3±4.1 5.0±2.2
BCN [41] (ECCV 20) 2.6 0.8 1.7 2.9±4.0 7.5±6.9 5.2±3.7

Disentangle [34] (CVPR 20) 2.7 2.7 2.4 5.4±2.9 3.3±6.0 4.4±3.0
RAEDFL [12] (ACPR 21) 0.69 1.67 1.18 5.41±6.40 2.50±2.74 3.96±3.90
Structure [45] (IJCB 21) 2.2 2.2 2.2 6.7±6.8 0.0±0.0 3.3±3.4

Ours 0.8 1.0 0.9 4.50±1.48 3.17±3.49 3.83±2.12
Table 5: Comparison of intra-domain face presentation attack detection on OULU-NPU.
The evaluation metrics are APCER(%) ↓, BPCER(%) ↓, and ACER(%) ↓.

OULU-NPU, MSU-MFSD, CASIA-MFSD, and Idiap Replay-Attack. The results in Ta-
ble 3 show that LDCNet achieves promising performances on the four protocols in both
metrics HTER and AUC. This performance improvement demonstrates the efficacy of LDC
and also shows that collaborative supervision of triplet mining and dual-attention effectively
promotes LDCNet to learn domain-invariant and live/spoof discriminative features.

In Figure 5, we further use the high-level features extracted from the last layer of FE to
generate the live and spoof activation maps. We see that: (1) the live activation maps of live
images concentrate mainly on facial regions, (2) the spoof activation maps of live images
exhibit nearly no responses, and vice versa for the spoof images. These visualization results
demonstrate excellent ability of the proposed LDCNet on learning live/spoof discriminative
features.

Next, we conduct the limited cross-domain testing by using the model trained on only
two source domains to evaluate the domain generalization ability. Among the four datasets,
as mentioned in [30], there exists a significant domain gap between MSU-MFSD and Idiap
Replay-Attack. Therefore, we use these two datasets as training domains and then conduct
the cross-domain testing on the two protocols [M, I]→ C and [M, I]→ O. The results in
Table 4 show that the proposed method significantly outperforms all the other methods and
achieves 26.38% improvement in HTER and 9.50% improvement in AUC over the state-of-
the-art method SSAN-M [38]. These results demonstrate the superior generalization ability
of LDCNet even when training on a small number of source domains.

Finally, we further conduct the intra-domain testing on OULU-NPU. As shown in Table
5, the results again demonstrate the effectiveness of the proposed method.

4 Conclusion

This paper proposes a novel Learnable Descriptive Convolution (LDC) to adaptively learn
the intrinsic textural features for face anti-spoofing and to extend the representation capacity
of vanilla convolution. In terms of LDC, we develop the Learnable Descriptive Convolu-
tional Network (LDCNet) and incorporate the idea of triplet mining and dual-attention su-
pervision to collaboratively guide LDCNet on learning domain-invariant as well as discrim-
inative textural features. Extensive experiments are conducted to verify the effectiveness of
the proposed method and also show significant improvement over previous methods on the
limited cross-domain testing.
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