Learnable Descriptive Convolutional Network for Face Anti-Spoofing

Pei-Kai Huang¹, Hui-Yu Ni¹, Yan-Qin Ni² and Chiou-Ting Hsu¹

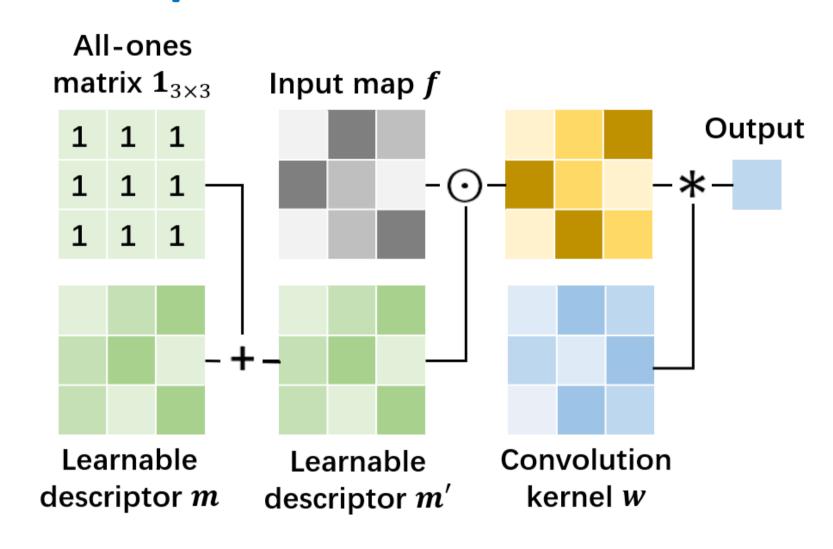
 1 National Tsing Hua University, Taiwan; 2 National Central University, Taiwan

Face Anti-Spoofing (FAS)

Goal

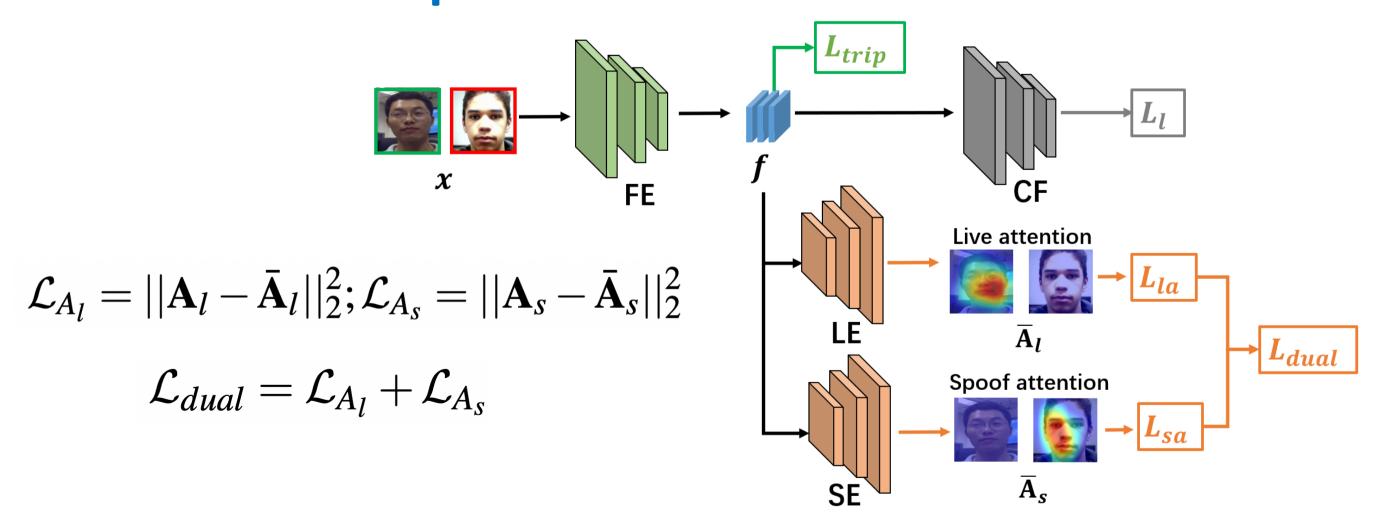
- Learning discriminative features
 - > From visually similar live and spoof faces?
- Achieving good cross-domain testing performance
 - > How to narrow the domain gap?

Live images

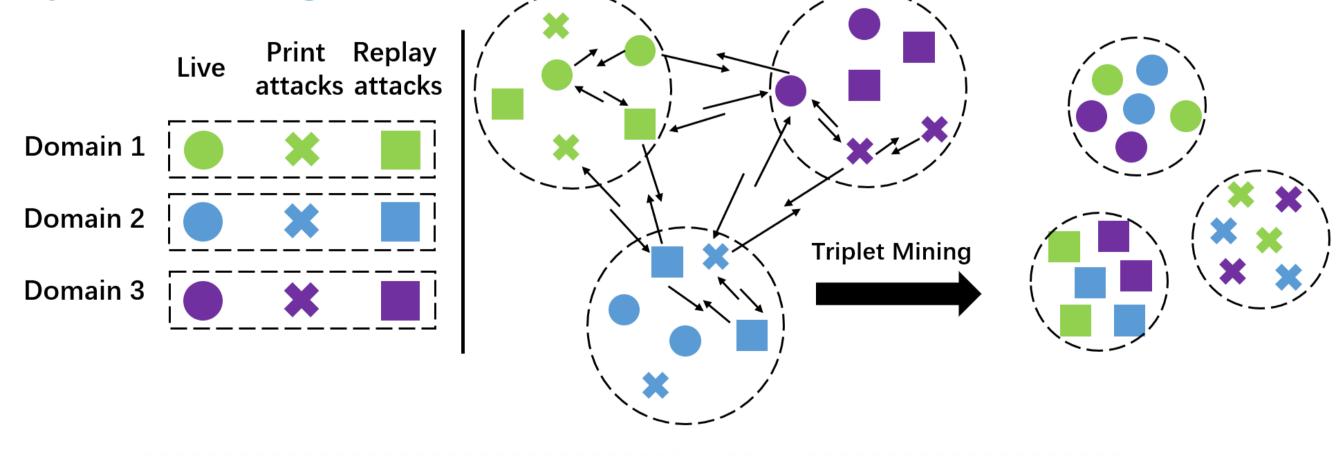

Print attacks

Replay attacks

LDCNet: Learnable Descriptive Convolutional Network


Idea

- Not limited to pre-defined local descriptors
- Proposed method
- Learnable Descriptive Convolution



$$g(p) = \underbrace{(1-\varepsilon)\sum_{p_n \in \mathcal{R}} w(p_n) \cdot f(p+p_n) + \varepsilon}_{\text{vanilla convolution}} \underbrace{\sum_{p_n \in \mathcal{R}} w(p_n) \cdot (f(p+p_n) \cdot m(p_n))}_{\text{learnable descriptive convolution}}$$

Dual Attention Supervision

Triplet Mining

$$\mathcal{L}_{trip} = \sum_{\forall x_i^a} (\|\mathbf{FE}(x_i^a) - \mathbf{FE}(x_i^p)\|_2^2 - \|\mathbf{FE}(x_i^a) - \mathbf{FE}(x_i^n)\|_2^2 + \alpha)$$

Total Loss

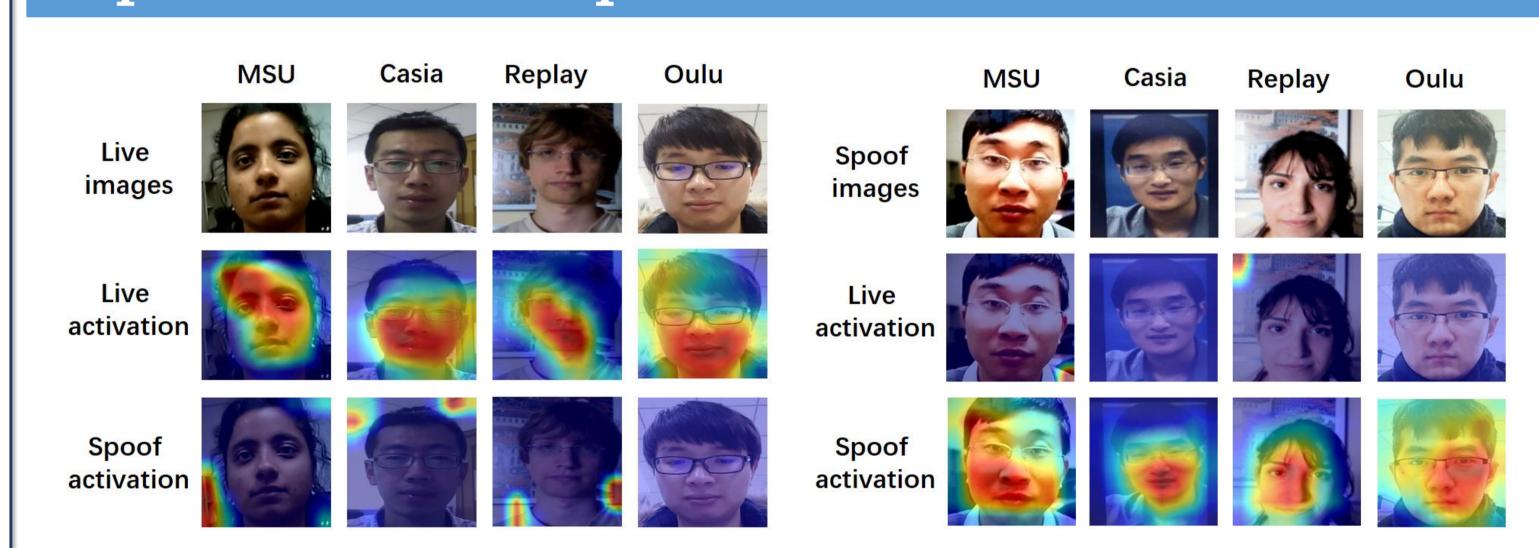
$$\mathcal{L}_T = \mathcal{L}_l + \beta \mathcal{L}_{trip} + \gamma \mathcal{L}_{dual}$$

BMVC 2022

Datasets

OULU-NPU (O), MSU-MFSD (M), CASIA-MFSD (C), Replay-Attack (I)

Ablation Studies


Different combinations of loss terms

Total loss \mathcal{L}_T			[O,C,I]→ M		[O,M,I]→ C		[O,C,M]→ I		[I,C,M]→ O		
\mathcal{L}_l	\mathcal{L}_{trip}	\mathcal{L}_{A_l}	\mathcal{L}_{A_S}	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC
√				15.24	90.43	18.33	89.45	17.14	89.84	18.22	88.37
√	✓			13.10	91.98	16.67	90.98	13.87	92.84	16.19	90.56
√	✓	✓		11.43	93.68	13.07	93.89	10.64	94.92	14.32	92.54
√	✓		✓	12.38	93.14	14.72	92.57	12.71	94.13	14.91	91.39
√	√	√	√	9.29	96.86	12.00	95.67	9.43	95.02	13.51	93.68

Different convolution kernels

Method	HTER	AUC
Vanilla Convolution [25]	16.65	84.19
Sobel Convolution [37] (CVPR 20)	14.96	90.00
Local Binary Convolution [15] (CVPR 17)	15.10	90.50
Central Difference Convolution [42] (TPAMI 20)	14.94	91.33
Ours: LDC	13.51	93.68

Experimental Comparisons

Intra-domain testing

Method		ACPER	BPCER	ACER	P.	ACPER	BPCER	ACER
SGTD [37] (CVPR 20)		2.0	0.0	1.0		3.2±2.0	2.2±1.4	2.7±0.6
BCN [41] (ECCV 20)		0.0	1.6	0.8		$2.8{\pm}2.4$	$2.3{\pm}2.8$	2.5±1.1
Disentangle [34] (CVPR 20)	1	1.7	0.8	1.3	3	$2.8{\pm}2.2$	$1.7{\pm}2.6$	2.2±2.2
RAEDFL [12] (ACPR 21)		1.67	0.00	0.83		1.38 ± 1.78	0.28 ± 0.68	0.83±0.86
Structure [45] (IJCB 21)		1.3	0.0	0.6		2.3 ± 2.7	1.4 ± 2.6	1.9±1.6
Ours		0.0	0.0	0.0		4.55±4.55	0.58 ± 0.91	2.57±2.67
SGTD [37] (CVPR 20)		2.5	1.3	1.9		6.7±7.5	3.3±4.1	5.0±2.2
BCN [41] (ECCV 20)		2.6	0.8	1.7		2.9 ± 4.0	7.5 ± 6.9	5.2±3.7
Disentangle [34] (CVPR 20)	2	2.7	2.7	2.4	4	$5.4{\pm}2.9$	3.3 ± 6.0	4.4±3.0
RAEDFL [12] (ACPR 21)		0.69	1.67	1.18		5.41 ± 6.40	2.50 ± 2.74	3.96±3.90
Structure [45] (IJCB 21)		2.2	2.2	2.2		6.7 ± 6.8	0.0 ± 0.0	3.3±3.4
Ours		0.8	1.0	0.9		4.50±1.48	3.17±3.49	3.83±2.12

Cross-domain testing

Method	$[O,C,I] \rightarrow M$		$[O,M,I] \rightarrow C$		[O,C,M]→ I		$[I,C,M] \rightarrow O$	
Wicthou	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC
MADDG [30] (CVPR 19)	17.69	88.06	24.50	84.51	22.19	84.99	27.89	80.02
DR-MD-Net [34] (CVPR 20)	17.02	90.10	19.68	87.43	20.87	86.72	25.02	81.47
SSDG-M [13] (CVPR 20)	16.67	90.47	23.11	85.45	18.21	94.61	25.17	81.83
RFM [31] (AAAI 20)	13.89	93.98	20.27	88.16	17.30	90.48	16.45	91.16
RAEDFL [12] (ACPR 21)	16.67	87.93	17.78	86.11	14.64	85.64	18.06	90.04
ANRL [19] (ACM MM 21)	10.83	96.75	17.83	89.26	16.03	91.04	15.67	91.90
D ² AM [5] (AAAI 21)	15.43	91.22	12.70	95.66	20.98	85.58	15.27	90.87
SDA [35] (AAAI 21)	15.40	91.80	24.50	84.40	15.60	90.10	23.10	84.30
CDCN-PS [43] (TBBIS 21)	20.42	87.43	18.25	86.76	19.55	86.38	15.76	92.43
FAS-DR-BC(MT) [27] (TPAMI 22)	11.67	93.09	18.44	89.67	11.93	94.95	16.23	91.18
LMFD-PAD [7] (WACV 22)	10.48	94.55	12.50	94.17	18.49	84.72	12.41	94.95
SSAN-M [38] (CVPR 22)	10.42	94.76	16.47	90.81	14.00	94.58	19.51	88.17
SSAN-R [38] (CVPR 22)	6.67	98.75	10.00	96.67	8.88	96.79	13.72	93.63
Ours	9.29	96.86	12.00	95.67	9.43	95.02	13.51	93.68

Limited cross-domain testing

Method	[M,I]	\rightarrow C	$[M,I] \rightarrow O$		
Method	HTER	AUC	HTER	AUC	
MADDG [30] (CVPR 19)	41.02	64.33	39.35	65.10	
DR-MD-Net [34] (CVPR 20)	31.67	75.23	34.02	72.65	
SSDG-M [13] (CVPR 20)	31.89	71.29	36.01	66.88	
RFM [31] (AAAI 20)	36.34	67.52	29.12	72.61	
RAEDFL [12] (ACPR 21)	31.11	72.63	29.23	74.62	
ANRL [19] (ACM MM 21)	31.06	72.12	30.73	74.10	
D ² AM [5] (AAAI 21)	32.65	72.04	27.70	75.36	
SDA [35] (AAAI 21)	32.17	72.79	28.90	73.33	
SSAN-M [38] (CVPR 22)	30.00	76.20	29.44	76.62	
Ours	22.22	82.87	21.54	86.06	