

Cédric Picron, Tinne Tuytelaars ESAT-PSI, KU Leuven

backbone

image →

Trident Pyramid Networks for Object Detection

BMVC

2022

neck

head

 \rightarrow loss/pred

Trident Pyramid Network (TPN)

Main results

Back	Neck	L	B	C	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	Params	tFPS	tMem	iFPS	iMem
R50	TPN	1	7	1	41.3	60.5	44.2	26.3	45.9	52.5	36.3 M	1.7	$3.31~\mathrm{GB}$	5.3	$0.50~\mathrm{GB}$
R50	TPN	2	3	1	41.6	60.9	44.6	26.4	45.8	53.2	36.2 M	1.7	$3.21~\mathrm{GB}$	5.5	$0.50~\mathrm{GB}$
R50	TPN	3	2	1	41.8	61.1	44.4	26.2	46.1	53.7	$36.7 \mathrm{M}$	1.6	$3.27~\mathrm{GB}$	5.3	$0.50~\mathrm{GB}$
R50	TPN	5	1	1	41.8	61.2	45.0	26.0	46.3	53.4	37.1 M	1.6	$3.22~\mathrm{GB}$	5.3	$0.50~\mathrm{GB}$
R50	BiFPN	7	_	1	41.3	61.2	43.7	27.1	45.2	53.8	34.7 M	1.8	$3.22~\mathrm{GB}$	6.0	0.49 GB
R50	bFPN	1	14	1	39.6	60.3	42.4	24.2	43.5	51.3	36.1 M	1.7	$3.26~\mathrm{GB}$	5.4	0.49 GB
R50	hFPN	1	14	1	40.0	60.2	43.0	25.6	43.9	51.1	36.1 M	1.7	$3.26~\mathrm{GB}$	5.4	$0.49~\mathrm{GB}$
R101	FPN	1	_	4	40.1	60.1	42.8	24.0	44.0	52.7	55.1 M	1.4	$3.20~\mathrm{GB}$	4.1	$0.57~\mathrm{GB}$
R101	TPN	1	2	1	40.9	61.0	44.2	25.0	45.3	52.6	$51.7 \mathrm{~M}$	1.6	$3.20~\mathrm{GB}$	4.6	$0.55~\mathrm{GB}$

Contribution 1: Our TPN neck outperforms the BiFPN neck (main baseline) by 0.5 AP on COCO.

Contribution 2: It is more beneficial to put additional computation into the neck than into the backbone or head.

Optimal neck configurations

COCO val AP vs. parameters

COCO val AP vs. training latency

COCO val AP vs. inference latency

Contribution 3: Balanced configurations with L, $B \ge 2$ outperform the unbalanced configurations (L, 1) and (1, B) under similar computation budgets. Existing works (e.g. BiFPN) mostly use (L, 1).