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Abstract

Channel pruning provides a promising prospect to compress and accelerate convo-
lutional neural networks. However, existing pruning methods neglect the compression
sensitivity of different layers and adjust the pruning rate through engineering tuning.
To address this problem, we propose to assign the layer-wise pruning ratio via the con-
centration of information for the convolutional layers. Specifically, we introduce the
rank and entropy of convolutional layers as indicators of the redundancy and amount of
information, respectively. After that, we define a fusion function, which compromises
these two indicators, to represent the concentration of information for the convolutional
layers. Additionally, for pruning filters with interpretability and intuition, we propose
to evaluate the importance of channels by leveraging Shapley values, which fairly dis-
tribute the average marginal contributions among them. Extensive experiments on various
architectures and benchmarks demonstrate the promising performance of our proposed
method (CICC). For example, CICC achieves an accuracy increase of 0.21% with FLOPs
and parameters reductions of 45.5% and 40.3% on CIFAR-10. Besides, CICC obtains
Top-1/Top-5 accuracy of 0.43%/0.11% with FLOPs and parameters reductions of 41.6%
and 35.0% on ImageNet. It is worth noting that our method can still achieve excellent
accuracy under high acceleration rates for pruning ResNet-110 on CIFAR-10.
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1 Introduction
Convolutional Neural Networks (CNNs) have achieved excellent performance in computer
vision tasks, such as image classification [9, 17, 43, 44], object detection [26, 28, 38, 39],
semantic segmentation [2, 30, 40], etc. However, these models require a quantity of param-
eters and computational costs, which makes it difficult for deploying them on mobile and
embedded devices. Even for efficient architectures (e.g., residual connection [9] and inception
module [44]), the over-parametrization and redundancy still exist and are always a challenge.
Therefore, it is essential to reduce the memory footprint and computation overhead of the
CNN-based models.

Network pruning is an effective way to accelerate and compress a model, and it can
be mainly divided into two categories, i.e., unstructured pruning [3, 4, 5, 6, 7, 8, 18] and
structured pruning [21, 22, 35, 45, 46, 52]. Unstructured pruning directly deletes weight
values in the layers to obtain sparsity. Nevertheless, the irregular sparse structure makes it
difficult to leverage BLAS libraries [37]. On the contrary, structured pruning methods remove
the entire filters or channels in the network, leaving a model with regular structures. In this
paper, we focus on channel pruning while minimizing the accuracy drop of the model.

One open problem for channel pruning is how to assign an appropriate pruning rate
for each layer. Recent works [12, 23, 33] tend to pre-define specific pruning rates for
different layers empirically. However, this usually demands heuristic and engineering tuning
[48]. Another critical problem is the selection of unimportant channels. Previous methods
[10, 11, 19, 23] design hand-crafted pruning criteria to distinguish the importance of channels,
but they do not leverage the interpretability of neural networks to evaluate the importance of
channels.

To address these two open problems, we propose to assign the layer-wise pruning ratio
via the concentration of information for the convolutional layers and prune the layers via the
contributions of channels (CICC), as shown in Fig. 1. We first feed randomly sampled image
batches to the pre-trained model to get the rank and entropy, which indicate the redundancy
and amount of information [23, 32], respectively, for the outputs of convolutional layers.
Then, we define a fusion function, which compromises these two indicators, to obtain an
overall indicator as the concentration of information for the layers. After that, we assign the
layer-wise pruning rate according to the fusion values. In the pruning phase, different from
previous works [10, 19, 23, 32] that prune the channels by self-calculating the importance
score, we bring up a theoretical basis: pruning the channels that contribute the least to
loss optimization. Shapley values [42] are naturally fit for evaluating the contributions of
channels, which could explicitly model the importance of the channels with feature attribution
explanation by fairly distributing the average marginal contributions among them. When
calculating the rank and entropy of the layers, we also compute the Shapley values. The
channels with the lowest Shapley values represent they contribute less to the optimization, so
pruning them leads to less harm to the performance of the model.

Contributions: To summarize, our contributions are as follows: (1) We define a fusion
function which compromises the rank and entropy to obtain an overall indicator as the
concentration of information for the convolutional layers. Then we assign the layer-wise
pruning ratio based on the fusion values. (2) We tap into Shapley values as a powerful tool
to evaluate the contributions of different channels and propose that contributions to the loss
optimization should be a sound pruning criterion. (3) Extensive experiments for pruning
backbones on the tasks of image classification on CIFAR-10 [16] and ImageNet [41], and
object detection on COCO [25], demonstrate the excellent performance of our method.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Lin, Doll{á}r, Girshick, He, Hariharan, and Belongie} 2017{}

Citation
Citation
{Liu, Anguelov, Erhan, Szegedy, Reed, Fu, and Berg} 2016

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Carreira-Perpin{á}n and Idelbayev} 2018

Citation
Citation
{Dong, Chen, and Pan} 2017

Citation
Citation
{Guo, Yao, and Chen} 2016{}

Citation
Citation
{Guo, Yao, and Chen} 2016{}

Citation
Citation
{Han, Mao, and Dally} 2015{}

Citation
Citation
{Han, Pool, Tran, and Dally} 2015{}

Citation
Citation
{Kwon, Lee, Kim, Kapoor, Park, and Wei} 2020

Citation
Citation
{Li, Sun, Tian, Xie, Liu, Su, and He} 2021{}

Citation
Citation
{Lin, Rao, Lu, and Zhou} 2017{}

Citation
Citation
{Molchanov, Tyree, Karras, Aila, and Kautz} 2016

Citation
Citation
{Tian, Chen, Zeng, and Liu} 2021{}

Citation
Citation
{Tian, Sun, Liu, Zeng, Wang, Liu, Zhang, and Chen} 2021{}

Citation
Citation
{Zhao, Ni, Zhang, Zhao, Zhang, and Tian} 2019

Citation
Citation
{Park, Li, Wen, Tang, Li, Chen, and Dubey} 2016

Citation
Citation
{He, Zhang, and Sun} 2017

Citation
Citation
{Lin, Ji, Wang, Zhang, Zhang, Tian, and Shao} 2020

Citation
Citation
{Luo, Wu, and Lin} 2017

Citation
Citation
{Wang, Qin, Zhang, and Fu} 2021{}

Citation
Citation
{He, Kang, Dong, Fu, and Yang} 2018{}

Citation
Citation
{He, Liu, Wang, Hu, and Yang} 2019

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Lin, Ji, Wang, Zhang, Zhang, Tian, and Shao} 2020

Citation
Citation
{Lin, Ji, Wang, Zhang, Zhang, Tian, and Shao} 2020

Citation
Citation
{Luo and Wu} 2017

Citation
Citation
{He, Kang, Dong, Fu, and Yang} 2018{}

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Lin, Ji, Wang, Zhang, Zhang, Tian, and Shao} 2020

Citation
Citation
{Luo and Wu} 2017

Citation
Citation
{Shapley} 2016

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M  {}al.} 2009

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2014

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014



YIHAO CHEN, ZHISHAN LI, ET AL.: CHANNEL PRUNING VIA CICC 3

Image batches

Pre-trained network

Pre-inference:

C

C

C

C

C

R

R

R

R

E

E

E

E

E F

F

F

F

F

S

S

S

S

S

CN

CN

CN

CN

CN

RK

RK

RK

RK

ET

ET

ET

ET

ET

FV

FV

FV

FV

FV

SV

SV

SV

SV

SV

S

FV

SV

CN

CN

CN

CN

CN

RK

RK

RK

RK

RK ET

ET

ET

ET

ET

FV

FV

FV

FV

SV

SV

SV

SV

RRK

Initial convolutional layer

Pruned convolutional layer

Channel 
PruningPruning:

0.13

0.24

Channels in the 𝑖௧௛
convolutional layer

Shapley
values

Channels in the 
ሺ𝑖 ൅ 1ሻ௧௛ convolutional layer

𝑃𝐿௡೔

𝑃𝐿ଷ

Players

0.09

0.13

0.24

-0.01

Channels in the 𝑖௧௛
convolutional layer

-0.46

Shapley
values

Channels in the 
ሺ𝑖 ൅ 1ሻ௧௛ convolutional layer

𝑃𝐿௡೔

𝑃𝐿௡೔ ି ଵ

𝑃𝐿ଷ

𝑃𝐿ଶ

𝑃𝐿ଵ

Players

Figure 1: The framework of our method is divided into two phases. (1) Pre-inference: We
feed randomly sampled image batches to obtain the rank and entropy (denoted by "RK" and
"ET"), the corresponding fusion values (denoted by "FV") and the Shapley values (denoted
by "SV") of each channel (denoted by "CN") in the convolutional layers. (2) Pruning: The
channels in a layer are regarded as players (denoted by "PL"), and a negative Shapley value
indicates that the player poses an adverse contribution to the cooperation. In each layer, the
channels with the smallest Shapley values (pink squares) are discarded.

2 Related Work

Pruning criteria: Structured pruning methods prune a model in filter or channel levels. The
discarded filters or channels reduce the model complexity and capacity but will inevitably
harm the accuracy of the model [10]. Therefore, removing the least important filters or
channels is an accepted way to minimize the decrease in accuracy. Prior works employ
multiple criteria to approximate the importance of the filters to remove the unimportant
ones, such as `1-norm [19], `2-norm [10], geometric median [11], rank [23] and statistics
information computed from the next layer [33].

Pruning rate: Recent works pre-define specific pruning rates for different layers, which
indicates that we know the percentage of filters/channels to be pruned in advance [48]. Early
works [10, 11, 32, 50] adopt a constant pruning ratio to prune the same percentage of filters
or channels in each convolutional layer. In contrast, HRank [23], ThiNet [33] and CP [12] set
different pruning rates for each layer empirically. PFEC [19] and CC [20] prune fewer filters
in the sensitive layers while pruning more aggressively in the insusceptible layers.

Pruning schedule: Pruning schedules to prune a network are generally categorized into
three typical choices: (1) One-shot [19, 48]: Prune the filters of multiple convolutional layers
at once. NISP [51], PFEC [19] and CC [20] prune the network by removing filters with the
least importance in a single step and fine-tune to retain the performance. (2) Progressive
[48]: Train and prune the network simultaneously. SFP [10] and FPGM [11] discard the least
important filters at the end of each training epoch. (3) Iterative [19, 48]: Prune each layer and
fine-tune the network, then repeat the process until the target sparsity is achieved. Previous
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studies [32, 33] prune and fine-tune the network layer by layer, and train the pruned model
again when all the layers are pruned.

3 Methodology

3.1 Preliminaries
We assume that a CNN-based network has L convolutional layers, and ni is the number of
filters for the ith convolutional layer Ci. Let hi and wi be the height and weight of the feature
maps in Ci. Ci consists of a set of filters Fi = {F1

i ,F
2
i , . . . ,F

ni
i } ∈ Rni×ni−1×ki×ki , where ki is

the kernel size of the filters.
In channel pruning, ni channels in Ci can be divided into two groups, i.e., the removed

ones Ui = {C
U1

i
i ,CU2

i
i , . . . ,CU

ui
i

i } and the remaining ones Qi = {C
Q1

i
i ,CQ2

i
i , . . . ,CQ

qi
i

i }, where ui
and qi denote the number of removed and remaining channels, respectively.

Assume that ψ(C j
i ) represents the importance of the jth channel in Ci. Hence, channel

pruning can be formulated as an optimization problem:

min
g j

i

L

∑
i=1

ni

∑
j=1

g j
i ψ(C j

i ), s.t.
ni

∑
j=1

g j
i = ui, (1)

where g j
i is an indicator function which is 1 if C j

i ∈Ui, or 0 if C j
i ∈ Qi. Our objective is

to minimize the information of the removed channels, i.e., to identify the least important
channels.

3.2 Concentration of Information
A convolutional layer with low rank represents that it contains a lot of redundant information,
so it can be compressed into a more compact one. Previous work [23] illustrates the rank of
each feature map under different image batches almost remains the same. Inspired by this, we
find that a small number of image batches can estimate the rank of convolutional layers via
their outputs, demonstrated in Fig. 2(a) ~ Fig. 2(c). Thus, we first sum the rank of feature
maps in each layer by feeding B images randomly sampled from N ones. Then, we get the
average rank per channel for the ith convolutional layer Ci:

R(Ci) =

B
∑

b=1

ni
∑
j=1

Rank(F j
i (b, j, :, :))

ni
(2)

Entropy measures the disorder or uncertainty, i.e., the amount of information, of a system
[34]. In channel pruning, a convolutional layer with low entropy indicates that channels in it
are less informative. Moreover, we find that the estimation of entropy for the convolutional
layers is similar to that of rank, as shown in Fig. 2(e) ~ Fig. 2(g). Given B input images,
we first map the tensor of the channel C j

i between 0 and 1 with softmax function, so that the
outputs of the channels in Ci can be regarded as the probability distribution:

p(C j
i ) = So f tmax(C j

i ) =

B
∑

b=1
eF j

i (b,:,:,:)

B
∑

b=1

ni
∑
j=1

eF j
i (b, j,:,:)

. (3)
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(h) YOLOv5m - Entropy

Figure 2: The average rank and entropy per channel for the outputs of convolutional layers
under different batches of input images. The x-axis represents the indices of convolutional
layers and the y-axis is the batches of images. The columns of subfigures demonstrate that
the rank and entropy for the outputs of convolutional layers is almost unchanged, regardless
of the image batches.

Next, the average entropy per channel of Ci is calculated as:

H(Ci) =−

ni
∑
j=1

p(C j
i ) log p(C j

i )

ni
(4)

Fig. 2 demonstrates that the rank and entropy for the outputs of convolutional layers
is almost unchanged but with slight fluctuations under different image batches. Besides,
the internal changes between the rank and entropy are not completely consistent. Thus, to
eliminate the inconsistency and leverage the complementarity of information between these
two indicators, we normalize them to the range [a,b] and define a fusion function, which
compromises these two indicators, to obtain an overall indicator as the concentration of
information for the convolutional layers:

O(Ci) = ∏
Y,Z

((b−a)
Y −minZ

maxZ−minZ
+a), (5)

where Y represents R(Ci) and H(Ci), and Z represents {R(Ci)} and {H(Ci)} ∀i ∈ {1,2, . . . ,L},
respectively. Then we also normalize O(Ci) to [a,b]. The overall indicator combines the
characterization of rank and entropy, so it represents the concentration of information. The
convolutional layers with smaller fusion values indicate they are less informative, so ui should
be set to a larger value.

3.3 Channel Pruning via Shapley Value
Shapley value emerges from the context where the players participate in cooperation. They
collectively obtain a reward which is intended to be fairly distributed to each player according
to the individual contribution, and such a contribution is a Shapley value [42]. We extend it to
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the channel pruning scenario: Considering a convolutional layer in a CNN-based model as a
game where individual channels in it "cooperate" to produce an output, we can attribute the
layer-wise outcome to each channel.

Assume that a set P = {1,2, . . . ,r} consists of r players participating in a cooperation,
and the subset s⊆ P denotes a coalition containing two or more players. We denote v(s) as
a characteristic equation defined on P if it satisfies v(∅) = 0 and ∀ disjoint subsets s1,s2 ⊆
P,v(s1∪ s2)≥ v(s1)+ v(s2).

The marginal contribution of the player t to all the coalitions containing t is calculated as:

ηt(v) = ∑
s∈St

(v(s)− v(s\{t})), (6)

where St denotes the set that contains the player t from all subsets, and v(s)−v(s\{t}) denotes
the marginal contribution of the player t, i.e., the contribution of the player t in coalition s.

Hence, the Shapley value for the player t is calculated as:

ϕt(v) = ∑
s∈St

(|s|−1)!(r−|s|)!
r!

(v(s)− v(s\{t})) ∝ ηt(v), (7)

where |s| represents the number of elements in the set s. Since ϕt(v) is proportional to ηt(v),
it indicates the average marginal contribution of a player in the cooperation.

In the case of convolutional neural networks, we consider ni channels {C1
i ,C2

i , . . . ,C
ni
i }

in the convolutional layer Ci representing ni players in the set Ci. The function f̂ maps each
subset m⊆ Ci of channels from activation outputs to real numbers for modeling the outcomes.
The Shapley value of the channel C j

i represents its average marginal contribution to the
convolutional layer:

ϕC j
i
( f̂ ) = ∑

m∈S
C j

i

(|m|−1)!(ni−|m|)!
ni!

( f̂ (m)− f̂ (m\{C j
i })). (8)

Thus, we can reformulate Eqn.(1) as:

min
g j

i

L

∑
i=1

ni

∑
j=1

g j
i ϕC j

i
( f̂ ), s.t.

ni

∑
j=1

g j
i = ui. (9)

4 Experiments

4.1 Experimental Settings
Benchmark datasets and models: To demonstrate the performance of our method, we
conduct the experiments for pruning different architectures, including VGGNet, ResNet and
DenseNet on CIFAR-10 and ImageNet, as well as YOLOv5 on COCO. We randomly sample
1024, 128 and 128 images to estimate the information of the convolutional layers for the
backbones on CIFAR-10, ImageNet and COCO, respectively. The range is set [1,10] for
scaling the rank, entropy and fusion values of the convolutional layers.

Configurations: On CIFAR-10 and ImageNet, we train the model with initial learning
rate of 0.1 and batch size of 256 for 200 and 90 epochs, respectively. On COCO, we train
the model with initial learning rate of 0.01 and batch size of 32 for 300 epochs. We use
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(e) YOLOv5m - Entropy
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(f) YOLOv5m - Fusion Value

Figure 3: The scaled average rank and entropy per channel for the outputs of convolutional
layers and the corresponding fusion values of the stages. The layers in multiple colors indicate
they are in different stages.

SGD as the optimizer. To evaluate the capabilities of models, we use Top-1 accuracy on
CIFAR-10, Top-1 and Top-5 accuracies on ImageNet, and mAP on COCO. We adopt FLOPs
and parameters reductions to evaluate the acceleration and compression ratios. On CIFAR-10,
we iteratively prune and fine-tune the network for 20 epochs. On ImageNet and COCO, we
employ the one-shot pruning schedule. The experiments are conducted on two NVIDIA RTX
3090 GPUs and two Tesla V100 GPUs.

4.2 Visualization for Concentration of Information
We first get the rank, entropy and the corresponding fusion values for the outputs of convolu-
tional layers via Eqn.(5). Inspired by PFEC [19], we denote a stack of layers by a "stage"
that keep the same feature map size. Inside each stage, we sum the fusion values and divide
the result by the number of layers. As shown in Fig. 3, smaller fusion values indicate lower
concentration of information. Thus, the pruning rates of the less important layers can be set
to smaller values while the pruning rates of the more important layers can be set to larger
ones. In our experiments, we prune the network in a per-stage fashion, i.e., a pruning rate for
a stage is used to prune the layers inside it.

4.3 Results and Analysis
4.3.1 Results on CIFAR-10

Tab. 1 shows the performance for pruned VGG-16, ResNet-56/110 and DenseNet-40 on
CIFAR-10.
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Model Method Base. Acc.
(%)

Accl. Acc.
(%)

Acc. ↓
(%)

FLOPs ↓
(%)

Params ↓
(%)

VGG-16

SSS [15] 93.96 93.02 0.94 41.6 73.8
CP [12] 93.26 90.80 2.46 50.6 –
CICC 93.91 93.17 0.74 52.3 45.7

CICC 93.91 93.38 0.53 61.0 50.7
HRank [23] 93.96 92.34 1.62 65.3 82.1

ResNet-56

GAL [24] 93.33 92.98 0.35 37.6 11.8
ACTD [50] 93.69 93.76 -0.07 40.0 50.0

CICC 93.39 93.60 -0.21 45.5 40.3
AMC [13] 92.80 91.90 0.90 50.0 –

FPGM [11] 93.59 93.26 0.33 52.6 –
DBP [49] 93.69 93.27 0.42 52.0 40.0

CICC 93.39 93.11 0.28 58.1 43.9
Graph [31] 93.27 93.38 -0.11 60.3 43.0

ResNet-110

SFP [10] 93.68 93.86 -0.18 40.8 –
HRank [23] 93.50 94.23 -0.73 41.2 39.4

CICC 93.68 94.56 -0.88 45.6 40.4

GAL [24] 93.50 92.74 0.76 48.5 44.8
FPGM [11] 93.68 93.74 -0.16 52.3 –

CICC 93.68 94.16 -0.48 58.1 44.0

DenseNet-40

CC [20] 94.81 94.67 0.14 47.0 51.9
CICC 94.22 93.56 0.66 44.4 60.8

HRank [23] 94.81 93.53 1.28 54.7 56.7
CICC 94.22 92.54 1.68 59.6 68.6

Table 1: Comparison of pruned VGGNet, ResNet and DenseNet on CIFAR-10. "Base. Acc."
and "Accl. Acc." refer to the accuracy of the baseline and pruned model. "Acc. ↓" is the
accuracy drop between the pruned and baseline model. "FLOPs ↓" and "Params ↓" denote the
FLOPs and parameters drop, respectively. The other tables follow the same convention.

VGG-16: Compared with SSS and CP, CICC achieves a lower accuracy drop (0.74% v.s.
0.94% by SSS and 2.46% by CP) and a larger FLOPs reduction (52.3% v.s. 41.6% by SSS
and 50.6% by CP). Besides, CICC yields an acceleration ratio of 61.0% and compression
ratio of 50.7%, obtaining a lower loss in accuracy (0.53%) than HRank (1.62%).

ResNet-56/110: For ResNet-56, CICC obtains an accuracy improvement better than
ACTD (0.21% v.s. 0.07), while GAL and AMC harms the accuracy by 0.35% and 0.90%,
respectively. Moreover, under larger acceleration ratio (58.1% v.s. 52.6% by FPGM and
52.0% by DBP) and compression ratio (43.9% v.s. 40.0% by DBP), CICC yields an accuracy
drop of 0.28%, which is less than FPGM (0.33%) and DBP (0.42%), while Graph achieves an
increase of accuracy by 0.11%.

For ResNet-110, CICC achieves an accuracy improvement of 0.88%, higher than SFP
(0.18%) and HRank (0.73%). Additionally, CICC gains a higher accuracy increase (0.48%)
than FPGM (0.16%), while GAL degrades the accuracy by 0.76%. With a slightly lower
parameters reduction than GAL (44.0% v.s. 44.8%), CICC reduces more FLOPs than GAL
and FPGM (58.1% v.s. 48.5% by GAL and 52.3% by FPGM).

DenseNet-40: Compared with HRank, CICC has the potential to compress the models
with dense blocks. Specifically, though CC produces an accuracy drop of 0.14%, it only
achieves a compression ratio of 51.9%. In contrast, 60.8% of parameters are removed by
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CICC. Besides, CICC achieves a accuracy drop of 1.68%, producing a larger parameters
reduction than HRank (68.6% v.s. 53.8%).

4.3.2 Results on ImageNet

Tab. 2 shows the performance for ResNet-50/101 on the large-scale ImageNet dataset.

Model Method

Base.
Top-

1
Acc.
(%)

Accl.
Top-

1
Acc.
(%)

Base.
Top-

5
Acc.
(%)

Accl.
Top-

5
Acc.
(%)

Top-1
Acc. ↓

(%)

Top-5
Acc. ↓

(%)

FLOPs
↓ (%)

Params
↓ (%)

ResNet-50

DSA [36] 76.02 75.10 92.86 92.45 0.92 0.41 40.0 -
CICC 76.13 75.70 92.86 92.75 0.43 0.11 41.6 35.0

SFP [10] 76.15 74.61 92.87 92.06 1.54 0.81 41.8 –
DECORE [1] 76.15 74.58 92.87 92.18 1.57 0.69 44.7 42.3

DSA [36] 76.02 74.69 92.86 92.06 1.33 0.80 50.0 –
TPP [47] 76.13 75.60 – – 0.53 – – –

CICC 76.13 75.29 92.86 92.47 0.84 0.39 50.4 44.2
Fisher [27] 76.79 76.42 – – 0.37 – 50.4 –

ResNet-101

FPGM [11] 77.37 77.32 93.56 93.56 0.05 0.00 42.2 –
CICC 77.37 77.35 93.55 93.59 0.02 -0.04 43.7 42.6

Rethinking [29] 77.37 75.27 – – 2.10 – 47.0 –
CICC 77.37 76.10 93.55 92.94 1.27 0.61 54.4 54.0

Table 2: Comparison of pruned ResNet on ImageNet.

For ResNet-50, CICC achieves 0.43%/0.11% Top-1/Top-5 accuracy drop, better than
DSA (0.92%/0.41%), SFP (1.54%/0.81%) and DECORE (1.57%/0.69%). Moreover, CICC
obtains 0.84%/0.39% Top-1/Top-5 accuracy drop, better than DSA (1.33%/0.80%) with a
44.2% parameters reduction. Besides, CICC achieves slightly higher Top-1 accuracy drop
than TPP (0.53%) and Fisher (0.37%).

For ResNet-101, CICC achieves a negligible Top-1 accuracy drop of 0.02% and even a
Top-5 accuracy improvement of 0.04%, which performs better than FPGM (0.05%/0.00%
Top-1/Top-5 accuracy drop). Besides, under a FLOPs reduction of 54.4% and a parameters
reduction of 54.0%, CICC obtains 1.27%/0.61% Top-1/Top-5 accuracy drop. In contrast,
Rethinking degrades the Top-1 accuracy by 2.10%.

4.3.3 Results on COCO

Tab. 3 shows the performance for pruned YOLOv5s/m on COCO.

Model Base. mAP (%) Accl. mAP (%) mAP ↓ (%) FLOPs ↓ (%) Params ↓ (%)

YOLOv5s 37.4 35.9 1.5 41.0 38.1

YOLOv5m 45.4 44.5 0.9 41.2 40.9

Table 3: Performance of pruned YOLOv5 on COCO with our proposed CICC.

For YOLOv5s, CICC achieves an mAP drop of 1.5% under 41.0% FLOPs and 38.1%
parameters reductions. Besides, CICC obtains 0.9% mAP drop under 41.2% FLOPs and
40.9% parameters reductions for pruning YOLOv5m.
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4.4 Ablation Studies

4.4.1 Varying Acceleration Rates

Fig. 4(a) shows the performance of our method compared with SFP [10] and FPGM [11] for
pruning ResNet-110 on CIFAR-10 with one-shot schedule w.r.t. the acceleration rates. Our
method achieves higher accuracy than the baseline model (93.68%) when the acceleration
ratio is not more than 51.8%, while the performance of FPGM only exceeds the baseline
model under 14.6% and 40.8% FLOPs reductions. This indicates that our method injects
more effective sparsification into the model, which helps regularize the neural network and
alleviate the over-fitting of an over-parameterized model [14].

4.4.2 Fitted Curve Between Pruning Ratio and Fusion Value

We empirically find a power function to fit the relationship between the number of channels
to be removed v.s. the fusion value of the convolutional layer as: f (x) = a · xb + c, where
a = 44.58, b =−3.56 and c = 11.85. Fig. 4(b) shows three curves for the estimation of the
relationship, where Curve 2 and Curve 3 are shifted from Curve 1 derived from the function.
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Figure 4: Results of ablation studies.

5 Conclusion and Future Work

In this paper, we define a fusion function, which compromises the rank and entropy, to
represent the concentration of information for the convolutional layers. Based on the fusion
values, we assign different pruning ratios for the layers. After that, we prune the layers by
removing the least important channels evaluated by Shapley values. Extensive experiments
on various backbones demonstrate the excellent performance of our method. In the future
work, we will try to specify the quantitative relationships between the pruning ratio v.s. the
fusion value of each convolutional layer in more scenarios and provide a general scheme for
the selection of layer-wise pruning rate.
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