

# **Content-Diverse Comparisons improve IQA**

Sony Al



William Thong<sup>1,2\*</sup>, Jose Costa Pereira<sup>3</sup>, Sarah Parisot<sup>3</sup> Aleš Leonardis<sup>3</sup>, Steven McDonagh<sup>3</sup>



University of Amsterdam<sup>1</sup> Sony Al<sup>2</sup> Huawei Noah's Ark Lab<sup>3</sup>

william.thong@sony.com, jose.c.pereira@huawei.com, steven.mcdonagh@huawei.com

**Perceptual Image Quality** Assessment (IQA)

**Pairwise Formation** 

Ablative studies



| Regularizer  |              |              | LIVE [45] |       |       |       | CSIQ [2 | 1]    | TID2013 [ <mark>40</mark> ] |       |       |
|--------------|--------------|--------------|-----------|-------|-------|-------|---------|-------|-----------------------------|-------|-------|
| $R_r$        | $R_{ ho}$    | $R_{\tau}$   | PLCC      | SRCC  | KRCC  | PLCC  | SRCC    | KRCC  | PLCC                        | SRCC  | KRCC  |
|              |              |              | 0.963     | 0.968 | 0.842 | 0.950 | 0.954   | 0.809 | 0.908                       | 0.897 | 0.717 |
| $\checkmark$ |              |              | 0.962     | 0.967 | 0.839 | 0.952 | 0.956   | 0.812 | 0.906                       | 0.896 | 0.715 |
|              | $\checkmark$ |              | 0.960     | 0.966 | 0.835 | 0.953 | 0.957   | 0.815 | 0.910                       | 0.901 | 0.723 |
|              |              | $\checkmark$ | 0.962     | 0.968 | 0.840 | 0.950 | 0.955   | 0.811 | 0.910                       | 0.900 | 0.722 |
| $\checkmark$ | $\checkmark$ |              | 0.960     | 0.966 | 0.837 | 0.954 | 0.959   | 0.819 | 0.908                       | 0.899 | 0.718 |
|              | $\checkmark$ | $\checkmark$ | 0.961     | 0.967 | 0.838 | 0.941 | 0.960   | 0.821 | 0.909                       | 0.900 | 0.721 |
| $\checkmark$ |              | $\checkmark$ | 0.960     | 0.966 | 0.837 | 0.954 | 0.959   | 0.820 | 0.912                       | 0.903 | 0.725 |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | 0.964     | 0.969 | 0.843 | 0.957 | 0.960   | 0.824 | 0.915                       | 0.907 | 0.731 |

Assign quantitative scores to rank images by their perceptual quality

- Straightforward task for humans; yet effective automation is challenging
- Traditionally done by ranking PSNR or SSIM scores
- Improvements arise by learning a deep network to compare *image* pairs of similar content

## Challenge

Content affects quality assessment











- (b) All pairs similar content (a) *Fixed* pairs *similar* content
  - (c) All pairs *differing* content
- Dataset:  $\{x^i, x^i_{ref}, y^i\}_{i=1}^M$  with M distorted images x, scalar quality score labels y • Learn function f to predict quality  $\hat{y} = f(x, x_{ref})$ ; *i.e.* "Full-Reference" IQA

## **Pairwise Training:**

- Learning of f typically relies on *pairwise* training: images  $x^i$  and  $x^j$  with  $i \neq j$ • If label  $y^i > y^j$ , then we desire:  $\hat{y}^i = f(x^i, x^i_{ref}) > \hat{y}^j = f(x^j, x^j_{ref})$
- Learn to produce faithful *image rankings c.f.* regressing directly to y

#### **Proposal:**

- Consider *all* possible image pairs; allow image content to *differ* within a pair
- Pairwise relaxation: **broader definition** of valid pairwise comparisons • No longer imposes a constraint on the number of comparisons in a mini-batch

• Proposed terms encourage linear properties and rank preservation

# Quantitative results

| Mathad       | Ι     | LIVE [4 | 5]    |       | CSIQ [2 | 1]    | TID2013 [ <mark>40</mark> ] |       |       |
|--------------|-------|---------|-------|-------|---------|-------|-----------------------------|-------|-------|
| Method       | PLCC  | SRCC    | KRCC  | PLCC  | SRCC    | KRCC  | PLCC                        | SRCC  | KRCC  |
| PSNR         | 0.865 | 0.873   | 0.680 | 0.819 | 0.810   | 0.601 | 0.677                       | 0.687 | 0.496 |
| SSIM [56]    | 0.937 | 0.948   | 0.796 | 0.852 | 0.865   | 0.680 | 0.777                       | 0.727 | 0.545 |
| MS-SSIM [55] | 0.940 | 0.951   | 0.805 | 0.889 | 0.906   | 0.730 | 0.830                       | 0.786 | 0.605 |
| VSI [61]     | 0.948 | 0.952   | 0.806 | 0.928 | 0.942   | 0.786 | 0.900                       | 0.897 | 0.718 |
| MAD [21]     | 0.968 | 0.967   | 0.842 | 0.950 | 0.947   | 0.797 | 0.827                       | 0.781 | 0.604 |
| VIF [44]     | 0.960 | 0.964   | 0.828 | 0.913 | 0.911   | 0.743 | 0.771                       | 0.677 | 0.518 |
| FSIM [60]    | 0.961 | 0.965   | 0.836 | 0.919 | 0.931   | 0.769 | 0.877                       | 0.851 | 0.667 |
| NLPD [20]    | 0.932 | 0.937   | 0.778 | 0.923 | 0.932   | 0.769 | 0.839                       | 0.800 | 0.625 |
| GMSD [58]    | 0.957 | 0.960   | 0.827 | 0.945 | 0.950   | 0.804 | 0.855                       | 0.804 | 0.634 |
| WaDIQaM [6]  | 0.940 | 0.947   | 0.791 | 0.901 | 0.909   | 0.732 | 0.834                       | 0.831 | 0.631 |
| PieAPP [41]  | 0.908 | 0.919   | 0.750 | 0.877 | 0.892   | 0.715 | 0.859                       | 0.876 | 0.683 |
| LPIPS $[62]$ | 0.934 | 0.932   | 0.765 | 0.896 | 0.876   | 0.689 | 0.749                       | 0.670 | 0.497 |
| DISTS [11]   | 0.954 | 0.954   | 0.811 | 0.928 | 0.929   | 0.767 | 0.855                       | 0.830 | 0.639 |
| IQT [10]     | _     | 0.970   | 0.849 | _     | 0.943   | 0.799 | _                           | 0.899 | 0.717 |
| Ours         | 0.964 | 0.969   | 0.843 | 0.957 | 0.960   | 0.824 | 0.915                       | 0.907 | 0.731 |

\*Please see our paper for corresponding references and additional benchmarks.





• Fixing image-pair content restricts diversity and limits model training exposure, in terms of heterogeneity

## Contributions

**Content-Diverse IQA training** 

- Relax pairwise constraints to enable comparisons with differing content 2 Derive three differentiable regularizers for listwise comparisons
- at the mini-batch level
- <sup>3</sup>Comprehensive evaluation across eight IQA datasets with

• Probabilistic model of  $y^i > y^j$  via Bradley-Terry sigmoid and cross-entropy:  $\mathcal{L}_{c} = \mathbb{1}[y^{i} > y^{j}] \cdot \log(p(y^{i} > y^{j})) + \mathbb{1}[y^{i} < y^{j}] \cdot \log(1 - p(y^{i} > y^{j}))$ 

## **Listwise comparisons and Correlation Coefficients**





#### **Downstream tasks**



- Image quality metrics for  $\times 4$ super-resolution
- Training objectives for ESRGAN [53] • We reduce subtle over-sharpening artifacts present in other methods

## Takeaways

state-of-the-art performance

## **Benefits**

• Emulate wide latent factors under consideration during human IQA • Applicable to any model architecture without structural changes

• Improvements to downstream reconstruction tasks (with IQA as a training objective)

\* Work done during an internship at Huawei Noah's Ark Lab

#### **Observation:**

• Pairwise comparisons provide only two distorted images; limit training visibility

### **Proposal:**

- $\hat{Y} = {\hat{y}^1, \dots, \hat{y}^L}$  predicted scores with Y related GT scores for set of L images
- Listwise comparisons via differentiable correlation coefficients
- Pearson coefficient  $R_r$  encourages linearity:  $r(Y, \hat{Y}) = \operatorname{cov}(Y, \hat{Y}) / \sigma_Y \sigma_{\hat{Y}}$
- Spearman  $R_{\rho}$ , linearity of ranks:  $\rho(Y, \hat{Y}) = \rho(\operatorname{rank}_{Y}, \operatorname{rank}_{\hat{Y}})$
- Kendall  $R_{\tau}$ , ordinal ranking:  $\tau(Y, \hat{Y}) = \frac{2}{L(L-1)} \sum_{i < j} \operatorname{sgn}(Y^i - Y^j) \operatorname{sgn}(\hat{Y}^i - \hat{Y}^j)$ 
  - rank and sgn are approximated with temperature-based sigmoid and tanh

• Regularizers are derived, final loss function becomes:  $\mathcal{L} = \mathcal{L}_c + \lambda (R_r + R_\rho + R_\tau)$ 

• Image content matters in image quality assessment • Formulate through diverse pairwise and listwise comparisons

# Links **Contact:** william.thong@sony.com steven.mcdonagh@huawei.com Paper: Code: