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(a) Tri-Layer Modelling: The tri-layer mask head predicts the mask of the target object, the occluder, and the 
occludee within the detection box Bi. The feature embeddings of the occluder/occludee branch are concatenated 
to the target mask embedding as cues to help better predict the target object mask. (b) Box Adjustment: The 
process of predicting the target mask is iterated, such that the second iteration is able to adjust the initial box 
predictions and better detect partially occluded / separated objects. (c) RoI Feature Re-weighting: After the first 
iteration, RoI features are pooled according to the predicted target mask to guide the model to focus more on the 
partially occluded / separated object itself.

ArchitectureIntroduction
Occlusion is very common in the 3D world
- One object is in front of another
- A portion of the scene disappears behind the non-transparent object that is closer to the viewer

Detecting/Segmenting occluded objects still remains a challenge for state-of-the-art object detectors
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Amodal Completion & Occlusion Reasoning

Generated Training Datasets: Occluder & Occludee Masks

Generated Evaluation Datasets: Occluded COCO v.s. Separated COCO
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Baseline is Swin-T + Mask R-CNN here.

Dataset # Total Objects

Separated COCO 3522

Occluded COCO 5550

Dataset # Total Objects

Occluder Masks 345,169

Occludee Masks 328,561
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Comparison with State-of-the-Art

Only fine-tuning the head could already contribute the majority of the improvement, 
validating the effectiveness of our proposed module as a general ‘plugin’, which can be 
inserted into pre-trained detectors, and give quick performance improvement.

Ablation Study
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For evaluation, we introduce two extra measures - Recall on Occluded COCO and 
Recall on Separated COCO to evaluate model’s capability of detecting partially 
occluded or separated objects. The plugin can always improve the number of recalled 
objects for both Occluded COCO and Separated COCO, which demonstrates the 
effectiveness of our plugin. The improvement on occluded objects could be transfered to 
improve the final mAP.  We can see the overall detection performance reflected by bbox 
and mask mAP is consistently boosted for different architectures.


