ZHAN, XIE, ZISSERMAN: A TRI-LAYER PLUGIN TO IMPROVE OCCLUDED DETECTION 15

Supplementary

A Training Details

Our model is implemented with MMDet [5], an open-source object detection toolbox based
on Pytorch. For each fine-tuning process, it takes about 20 epochs to converge. We set the
initial learning rate to be 0.000001, which is the learning rate at the end of the official COCO
training of these models [1], and drop the learning rate by 10 at epoch 16. Weight decay is
set to be 0.05, and batch size is 16, following the official training setting. When only the head
is fine-tuned, the training process is much quicker because the number of trained weights is
greatly cut down. Approximately the training time will be only half of that for fine-tuning
the entire network.

B Amodal Completion

In Section B.1, we provide details about the evaluation of the amodal completion model.
After that, in Section B.2, we show more visualisation examples to illustrate the effectiveness
of the amodal completion model on COCO val.

B.1 Details of Quantitative Evaluation

In this section, we aim to evaluate the performance of different models for amodal comple-
tion on COCO. However, one challenge is that COCO does not provide GT amodal masks.
We thus borrow the GT amodal masks from COCOA [41] which is a subset of COCO with
manual annotation of the amodal segmentation mask for each object. We transfer the GT
amodal masks from COCOA to COCO as follows: first, determine the images that are in
common between the two datasets; then for a specific object in COCO, within a common
image, determine if COCOA provides an amodal mask by comparing their modal masks us-
ing IoU. This is necessary because the modal mask in COCOA might be slightly different
from that in COCO. If the IoU is greater than 0.7, then the match is accepted, and the amodal
mask is used. As a result, we evaluate on 450 objects in COCO2017 val.

As Table 1 shows (result of [39] on COCOA val is as reported in their paper), the perfor-
mance of [39] drops significantly when applied to COCO2017 val. In contrast, our model
achieves better performance on COC0O2017 val than [39] on COCOA val. In Section B.2, we
provide qualitative results from both our model and [39]. We conjecture that the substantial
performance drop of [39] is due to the domain gap between COCO and COCOA, e.g., the
annotations in COCO tend to have a gap between objects, and even for the same object the
modal annotation mask in COCO and COCOA might be slightly different, thus the model
trained on COCOA will struggle to generalise to COCO val.

B.2 Qualitative Comparison

Figure 6 shows qualitative results of our model and the model of [39] for amodal completion
on COCO02017 val. We can observe that our model can generate significantly better amodal
segmentation masks, and reason about the occluded parts of the objects.
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Predicted Amodal Predicted Amodal

Original Image GT Modal Mask Mask by [39] Model Mask by Our Model

Figure 6. Comparison of di completi . Our amodal comi)letion model
performs significantly better than the model of [39].
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C Examples of Generated Training Data

In Figure 7, we show visualisation of the results from our automatic pipeline that can infer
occluder and/or occludee masks for target objects in COCO2017 train.

Original Image Target Object Occluder Mask Occludee Mask

Figure 7. More examples of automatically generated training data. For each row, from left to right
is: original image, the object of interest (target object), its occluder mask, and its occludee mask.
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D Additional Qualitative Comparison on COCO

Figures 8 and 9 provide more qualitative detection examples to illustrate the effectiveness
of our plugin over the baseline (Swin-T + Mask R-CNN) on partially occluded objects and
separated objects. In both cases, our plugin can systematically solve two common failure
patterns of the baseline detector: (1) Over segmentation, where part of the occluder or sur-
rounding objects is included in the mask; (2) Under segmentation, where only part of the
partially occluded / separated object is included in the mask.

Original Image GT Baseline Our Model
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Figure 8. Additional qualitative comparison of our model with baseline on Occluded COCO.
Our model can systematically solve the common failure patterns of over-segmentation (the mask is too
large, and includes part of occluder) (Row 1-3) and under-segmentation (the mask is too small) (Row
4-6) for partially occluded objects.
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Original Image

Figure 9. Additional qualitative comparison of our model with baseline on Separated COCO. Our
model could systematically solve the failure patterns of under-segmentation (the mask is too small, and
only includes part of the separated object) (Row 1-4) and over-segmentation (the mask is too large, and
also includes part of the occluder or surrounding objects) (Row 5-6) for separated objects.
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E Results on Other Datasets

In this section, we include additional experimental results for comparison between our model
and baseline (Swin-T + Mask R-CNN) on Openlmages [16], OVIS [22] and KINS [23], as
well as details for evaluation on each dataset. Section E.1, Section E.2 and Section E.3
provide quantitative results and evaluation details for Openlmages, OVIS and KINS, respec-
tively, while qualitative results are shown in Section E.4.

E.1 Quantitative Results on Openlmages

Openlmages is a large-scale image dataset with manual annotations for some object masks
together with the labels, indicating whether the object is occluded/truncated/crowd/depiction/
inside or not. To evaluate the model’s capability to detect partially occluded / separated ob-
jects, we collect a subset of objects with masks in Openlmages Test Set, which are labelled as
occluded but not truncated/crowd/depiction/inside, and denote the subset as Only Occluded
Openlmages Test. We further divide these objects into an Occluded set and a Separated
set, depending on whether their masks are connected or not, like the division for COCO in
the main paper. As a result, there are 3356 objects in total, with 2103 Occluded and 1253
Separated, in 2348 images.

Table 6 shows that our plugin can improve the performance of the baseline model in
terms of recall and mIoU on both the Occluded objects and Separated objects. The recall
and mloU for Occluded objects only shows marginal improvement, because the selected
“Occluded objects” are relatively easy and already well-detected by the baseline (over 75%).
Therefore, the advantage of our plugin on “Occluded objects” is not so significant.

Method Only Occluded Openlmages Test Sampled OVIS
Recall  Recall mloU mloU Recall ~ Recall mloU mloU
Occluded Separated Occluded Separated Occluded Separated Occluded Separated
Baseline 1551 607 74.0 642 3960 1587 61.1 4938

Baseline + Our Plugin 1569 672 741 654 3994 1673 0605 50.3

Table 6. Results on Only Occluded Openlmages Test and Sampled OVIS. For both datasets, the
plugin slightly improves over the baseline’s performance, particularly on Separated objects.

E.2 Quantitative Results on OVIS

OVIS (Occluded Video Instance Segmentation) is a dataset with videos of occluded objects.
For each object in the training set, it has mask annotations as well as a manual occlusion
label to be ‘no occlusion’ / ‘slight occlusion’ / ‘severe occlusion’. In order to evaluate on
reasonably distinct frames, we pick 1 frame every 10 frames. Then we collect an evaluation
image dataset (denoted as Sampled OVIS) containing 4443 images where we can calculate
each detector’s recall of the Occluded objects and Separated objects (the division into *Oc-
cluded’ and ’Separated’ is the same as in Openlmages). There are in total 7265 Occluded
objects and 5187 Separated objects.

From Table 6, we can see that recall on Occluded objects and Separated objects of the
baseline can be consistently boosted by the plugin. In terms of mIoU for Occluded/Separated
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objects, there is no significant improvement from the plugin. These failure cases are mainly
due to motion blur or require temporal context. We leave this to future work.

E.3 Quantitative Results on KINS

As mentioned in Section 5.3, we evaluate on the KINS dataset by directly evaluating the
model that has been trained on COCO. To handle the problem that KINS classes and COCO
classes are different, we make a mapping from COCO classes as in Table 7. Note that ‘misc’
is not mapped to any COCO class, and ‘misc’ objects are not evaluated on.

KINS Class ID  KINS Class Name Mapped to COCO Class Name

1 cyclist person
2 pedestrain person
3 rider person
4 car car

5 tram train
6 truck truck
7 van truck
8 misc none

Table 7. Mapping from KINS classes to COCO classes for evaluation.

Since [38] has not released their code and model, it is difficult to make a fair comparison.
In our evaluation, we test the baseline models and our model based on Swin-T + Mask R-
CNN on the KINS test set, and calculate the mIoU following [38]. In particular, during
inference time, we input the GT box to the models because [38] also inputs the GT amodal
box to their model for instance segmentation inference which suits their setting.

Method mloU
Yuan et al [38] 67.2
Swin-T + Mask R-CNN 66.6

Swin-T + Mask R-CNN + Bi-Layer 67.0
Swin-T + Mask R-CNN + Our Plugin  68.5

Table 8. Comparison with [38] on KINS. With our plugin the baseline model can achieve a better
performance than [38].

Note that, the performance of our model is under-estimated with this evaluation protocol
for the following reasons: (i) KINS classes and COCO classes are different. We use a
mapping from KINS classes to COCO classes, but this adds to the difficulty for our model
to detect these KINS objects. (ii) KINS annotations and COCO annotations are different,
adding to the difficulty of adapting our models to test on KINS. (iii) There could also be a
domain shift.

Our model still outperforms the baseline model and the previous approach [38] (shown
in Table 8), demonstrating the effectiveness of our plugin module.
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E.4 Qualitative Results on Other Datasets

Original Image GT Baseline Our Model

Figure 10. Qualitative comparison on other datasets. Though not trained on these datasets, com-
pared with the baseline, our model can solve the failure patterns of over-segmentation (including part
of the occluder in the mask) (Row 1, 3, 4, 6, 7) and under-segmentation (Row 2, 5) for both partially
occluded (Row 1, 2, 4, 6, 7) and separated objects (Row 3, 5). Openlmages: Row 1-3; OVIS: Row 4-5;
KINS: Row 6-7.

Figure 10 shows examples where our plugin solves the baseline’s failure patterns as men-
tioned in Section D on Openlmage, OVIS and KINS, qualitatively illustrating the effective-
ness of our designed plugin when generalised to other datasets.
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F Other Discussions

F.1 Number of Iterations

For our current plugin, we apply two iterations of the tri-layer mask heads. We have also
experimented with applying the module three times, and the comparison is shown in Table 9.

Number of Iterations Recall Occluded Recall Separated BBox mAP Mask mAP

Baseline* 3264(58.81%)  1125(31.94%) 46.0 41.6
2 3434(61.87%)  1208(34.30%) 48.3 42.9
3 3401(61.28%)  1194(33.90%) 48.7 43.0

Table 9. Comparison of different number of iterations on Swin-T + Mask R-CNN. There is not
much difference between 2 and 3 iterations. *Baseline denotes original Swin-T + Mask R-CNN with-
out our plugin.

The mAP performance of three iterations is similar to using it twice, while performance
on occluded objects becomes worse. For this reason, we only apply it twice.

F.2 Class-Agnostic v.s. Class-Specific

For both bi-layer and tri-layer modelling, we have two choices of the occluder/occludee
heads — either to be class-agnostic or class-specific. Note that bi-layer modelling only has
one extra occluder head to predict all surrounding objects of the target object, while tri-layer
modelling has a pair of occluder/occludee heads to predict the occluders/occludees of the
target object, and can capture the occlusion ordering of different objects.

If an occluder/occludee head is class-agnostic, it only outputs one mask prediction; if the
occluder/occludee head is class-specific, it outputs 80 mask predictions and the final result
is the i-th mask prediction where i is class prediction of the instance. The results of both
bi-layer and tri-layer modelling under class-agnostic and class-specific settings are shown in
Table 10.

Biloellow ot el Kl BBox mAP Mask mA?
Baseline* - 3264(58.81%) 1125(31.94%) 46.0 41.6
Bi-Layer Class-Specific 3315(59.73%) 1147(32.57%) 46.3 42.0
Tri-Layer Class-Specific 3358(60.50%) 1166(33.11%) 46.2 422
Bi-Layer  Class-Agnostic 3339(60.16%) 1147(32.57%) 46.3 42.2
Tri-Layer  Class-Agnostic 3360(60.54%) 1159(32.91%) 46.3 42.2

Table 10. Comparison of bi-layer and tri-layer modelling under class-specific and class-agnostic
settings. In both settings, tri-layer modelling outperforms bi-layer modelling. *Baseline denotes orig-
inal Swin-T + Mask R-CNN without our plugin.

We can observe that in both class-agnostic and class-specific settings, tri-layer modelling
outperforms bi-layer modelling.



