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Background

Criteria-based Pruning Structured pruning usually removes redundant filters according to

some human-crafted criteria. It usually requires to identify the relative importance of filters.

Recent research shows that structure of network is more important than filter weights.

Search-based Pruning Search-based methods consider pruning as an architecture search

paradigm. They search an optimal subnet by using RL, GS or NAS. But these methods involve

strong domain expertise, require extra hyper-parameter tuning etc.

EAPruning

Pruning SpaceWe use channel-number encoding instead of channel-wise one-hot encoding.

This can greatly reduce search space.

Channel SelectionWe assume that the performance of the subnet only has to do with the

structure, we just randomly sample channels to a target number.

Weight-ReconstructionWe use the technique of weight reconstruction to avoid performance

collapse of subnetworks.

Pruning SearchWe choose NSGA-III instead of vanilla evolution. Firstly, it can maintain the

diversity of the population. Secondly, we can sample multiple subnets that meet different

constraints from the Pareto front at the end.

Method

Our whole pipeline can be viewed in Figure 1.
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Figure 1. EAPruning Pipeline

Our pruning space for an attention block in Vision Transformers is shown in Figure 2.
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Figure 2. We prune the number of heads for Q, K and V (correspondingly the projection dimension) and MLP

inner dimension only. The dotted gray area shows weights to be pruned, green area shows the remaining

weights for convolutions. The shape of input and output of each block is retained.

Algorithm

Algorithm 1 Evolutionary Pruning Algorithm

Input: Original Network: N , Pretrained Weights: W , Population Size: P , Number of Mutation:
M, Number of Crossover: S , Max Number of Iterations: T .

Output: K optimal Sub-Networks: GK .

1: G0 = Random(N , P );
2: for i = 1 : T do

3: Gmetric = Infer(Reconstruct(Gi−1, W ));

4: Gi = NSGA-III.NextGen(Gmetric, M, S);
5: end for

6: GK = ParetoFront(GT , K);
7: return GK;

Experimental Results

We prune on DeiT-Base, ResNet50 and MobileNetV1 with EAPruning and report their results in

Table 1, 2 and 3. Improved speedup is shown in Table 4.

Model FLOPs ReductionTop-1 Epochs Training

DeiT-Base ([9]) 17.8G - 81.8% 300 Scratch

VTP ([11]) 13.8G 22.4% 81.3% 100 Finetune

EAPruning (Ours) 13.5G 24.2% 81.3% 100 Finetune

AutoFormer ([1]) 11.0G 38.2% 82.4% 500 Supernet

EAPruning (Ours) 11.0G 38.2% 81.6% 500 Scratch

Table 1. Pruning DeiT-Base on ImageNet, compared with state-of-the-art search-based methods.

Model FLOPs Reduction Top-1

ResNet50 [4] 4111M - 76.0%

AMC [5] 2047M 50.3% 75.5%

NetAdapt [10] 2239M 45.6% 75.9%

MetaPruning [7] 2G 51.4% 75.4%

N2NSkip [8] ≈2G 50% 74.6%

ResRep [3] ≈1871M∗ 54.5% 76.2%

EAPruning (Ours) 2019M 50.9% 75.7%

OTO [2] ≈1418M∗ 65.5% 74.7%

EAPruning (Ours) 1554M 62.2% 74.8%

EAPruning (Ours) 1063M 74.1% 73.6%

Table 2. Pruned ResNet50 on ImageNet at 2G and 1G FLOPs level. ∗: estimated by reduction ratio.

Model FLOPs Reduction Top-1

MobileNetV1 ([6]) 569M 70.6%

MobileNetV1 ([6]) 325M 0.75× 68.4%

AMC ([5]) 301M 0.89× 70.4%

NetAdapt ([10]) 284M 1× 69.1%

MetaPruning ([7]) 281M 1× 70.6%

MetaPruning ([7]) 324M 0.75× 70.9%

EAPruning (Ours) 302M 0.88× 71.1%

Table 3. Comparison of pruned MobileNetV1 models on ImageNet.

Model Throughputs Acc Speedup

(img/s) (%)

ResNet50 3753

ResNet50×0.5 5147 -0.30 1.37×
MobileNetV1 9176

MobileNetV1×0.5 12296 -0.09 1.34×
DeiT-Base 777

DeiT-Base×0.6 1086 -0.35 1.40×

Table 4. Our EA pruned models enjoys obvious speedup on NVIDIA A30 GPUs.
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