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Abstract

Deep Neural Networks (DNNs) are ubiquitous and span a variety of applications
ranging from image classification to real-time object detection. As DNN models become
more sophisticated, the computational cost of training these models becomes a burden.
For this reason, outsourcing the training process has been the go-to option for many
DNN users. Unfortunately, this comes at the cost of vulnerability to backdoor attacks.
These attacks aim to establish hidden backdoors in the DNN so that it performs well on
clean samples, but outputs a particular target label when a trigger is applied to the input.
Existing backdoor attacks either generate triggers in the spatial domain or naively poison
frequencies in the Fourier domain. In this work, we propose a pipeline based on Fourier
heatmaps to generate a spatially dynamic and invisible backdoor attack in the frequency
domain. The proposed attack is extensively evaluated on various datasets and network
architectures. Unlike most existing backdoor attacks, the proposed attack can achieve
high attack success rates with low poisoning rates and little to no drop in performance
while remaining imperceptible to the human eye. Moreover, we show that the models
poisoned by our attack are resistant to various state-of-the-art (SOTA) defenses, so we
contribute two possible defenses that can evade the attack.

1 Introduction
Deep neural networks (DNNs) play a crucial role in various applications such as facial recog-
nition systems [38], medical image analysis [31], autonomous driving [42], among others
[15, 24]. As the tasks become more difficult, the need for more sophisticated and com-
plex models arises. Such models are generally harder to train and might require extensive
hyperparameter tuning to achieve the required performance. Recently, and due to the lim-
ited access to computational power for most individuals and small companies, outsourced
training and the use of out-of-the-box pre-trained models became popular [36].

Outsourced training creates a set of serious vulnerabilities, as it involves several stages
that the outsourcer could exploit, including data collection, data pre-processing, and model
deployment [13, 16, 28, 33]. An important threat that could be exploited during training is
called a backdoor attack. Backdoor attacks create an association between an attacker-defined
pattern, called the trigger, and a chosen target label in such a way that the malicious actor
can instigate the trigger at will without degrading the model’s performance on clean samples.
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(a) (b) (c) (d) (e)
Figure 1: Backdoor Attacks in the Frequency Domain. Frequency-based backdoor attacks
exploit the frequency sensitivity of a network, i.e the sensitivity of its performance to varia-
tions in individual frequency components in the Fourier domain. Our proposed attacks focus
on poisoning the most sensitive frequencies. (a) ResNet50’s sensitivity Fourier heatmap (red
regions are highly sensitive, while blue regions are less sensitive); (b) Top-k selected fre-
quencies, into which backdoor attacks are embedded; (c) Clean image; (d) Poisoned image;
(e) Scaled absolute difference (×20) between the poisoned and clean images.

This association is usually created through training data poisoning [2, 16, 28, 33], where the
adversary applies a trigger to a set of images from the training set and then switches their
ground truth label to a chosen target class before model training begins.

Most existing backdoor attacks [1, 5, 16, 26, 33, 35, 49, 51, 56, 57] rely on the spatial
domain to generate and embed the trigger. For example, [16] applies a white square stamp
on the corner of some training images to poison the data. Other methods such as [33] rely on
an optimization-based approach to generate optimal trigger values. These attacks experience
a sharp trade-off between the amount of poisoned data, the invisibility and success of the
attack, and the performance of the model on the original task. On the other hand, most back-
door defenses rely on the spatial domain or properties of this domain to detect and mitigate
attacks [12, 17, 39, 47]. Since most backdoor attack techniques tend to be visible and static,
i.e the same spatial trigger is applied to all poisoned images, defense techniques in the spatial
domain, such as reversed trigger construction [17, 47] and fine-pruning [32], easily succeed
in detecting, reverse engineering, and mitigating the embedded backdoor trigger.

Recently, [11, 48] have proposed creating backdoor attacks in the frequency domain.
However, both proposed attacks naively select the frequency components to poison.

Contributions. Given the weaknesses associated with developing backdoor attacks in the
spatial domain and the limitations of existing frequency attacks, in this work, we propose
a backdoor attack that utilizes Fourier heatmaps to design a sophisticated backdoor poison-
ing attack in the frequency domain. Unlike previous attacks, our frequency-based attack
does not face the aforementioned trade-offs. We also show two potential ways to defend
against frequency-based backdoor attacks and possible ways for the attacker to bypass these
defenses. The proposed method is extensively evaluated on multiple models and datasets.

2 Related Work

Backdoor Attacks. Backdoor attacks were first introduced in [16] as a possible security
breach that could be exploited in DNNs. They showed that adding a simple patch to the
corner of a subset of the training images creates a backdoor that could be maliciously trig-
gered to output a predefined target label. Later, several works were introduced, such as
[33], where the values of a predefined mask were optimized to obtain an optimal trigger.
On another track, [5] realized the importance of having invisible or imperceptible triggers
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to evade possible human inspection. The authors proposed blending the backdoor trigger
and the clean images together, replacing the previously used stamping technique. Along
these lines, other invisible attacks were proposed, such as [29] which used least-significant
bit (LSB) algorithm from the steganography literature to generate an invisible attack, [37]
which utilized image warping to poison data samples, and [56] which proposed having input-
aware trigger patterns that poison the edges of the image. [10] highlighted the importance of
learning the trigger-generating transformation to achieve a high attack success rate. [9] pro-
posed utilizing the latent space representation to generate imperceptible backdoor triggers
by minimizing the Wasserstein distance between the representations of clean and poisoned
samples. [27], also inspired by steganography, generated sample-specific triggers by encod-
ing an attacker-specified “string" into clean samples using an autoencoder network. [54]
analyzed the characteristics of spatial backdoor attacks in the frequency domain and pro-
posed a technique to create smooth but visible spatial backdoor triggers. Recently, [11, 48]
introduced a simple way to apply trojan attacks in the frequency domain. Specifically, [11]
blends the low-frequency content of a trigger image with that of the target images, and [48]
arbitrarily poisons a high-frequency component and a mid-frequency component.

Contribution. Our work adds to the literature an invisible frequency backdoor attack.
Unlike existing frequency backdoor attacks [11, 48], our attack poisons the data by
altering well-chosen frequency components based on the model’s frequency sensitivity.

Backdoor defenses. Early defense mechanisms such as fine-pruning [32] relied on neu-
ron activations to mitigate backdoors embedded in a DNN. In particular, pruning the least
active neurons on clean images and then fine-tuning the model on clean samples can re-
verse the backdoor attack. [46] and [3] used robust statistics and analysis of neural network
activations, respectively, to thwart and detect backdoor attacks. Later, more sophisticated
optimization-based methods, such as Neural Cleanse (NC) [47], TABOR [17] and ABS [34],
were developed to mitigate backdoor attacks. NC computes an anomaly index, which indi-
cates whether an abnormally short distance exists between a particular class and all other
classes. If the anomaly index exceeds a threshold, NC finds a reverse engineered trigger
that is used to fine-tune the model on poisoned but correctly labeled samples. [8] relied on
computing class activation maps using Grad-CAM [44] to find the regions the network is at-
tending to in hopes of detecting the attacker-triggered region, which is then replaced through
image restoration. [59] adopted persistent homology from topological data analysis to dis-
cover structural abnormalities in poisoned models. TOP [23] showed that adversarial per-
turbations transfer better from image to image in poisoned models compared to clean ones,
which can be used to detect poisoned models. STRIP [12] observes that when a poisoned
image is blended with a clean one, the backdoor is still activated, which allows for detecting
backdoor attacks by analyzing the entropy of the prediction vectors. SPECTRE [18] explores
robust covariance estimation to amplify the spectral signal i.e the signature of poisoned data.

Contribution. Our work proposes two defenses that alter the frequency spectrum of the
input, to mitigate the adverse effects of frequency-based backdoor attacks.

3 Preliminaries
To clearly detail our proposed frequency-based approach, we briefly review the concept of
Fourier heatmaps that was first introduced in [52]. Fourier heatmaps provide a tool for
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Figure 2: Pipeline. We illustrate the pipeline for our proposed frequency-based data poi-
soning method. After training a network naturally, the Fourier heatmap for this model is
generated and the top-k most sensitive frequencies are selected as a poisoning filter. This fil-
ter is then used to poison a subset of the training dataset before training the poisoned model.

analyzing the sensitivity of a DNN to a specific Fourier frequency basis by analyzing how
this DNN performs when subjected to input perturbations in this basis [52].
Notation. We denote the 2D Discrete Fourier Transform of an image X ∈ Rd1×d2 by F :
Rd1×d2 → Cd1×d2 and its inverse by F−1 (both operations are applied per channel). By
default, we assume that the frequency components are shifted toward the center of the Fourier
spectrum, i.e low frequencies are set about the center.
2D Fourier Basis. Let Ui, j be a real valued matrix in Rd1×d2 with the following properties.
(1) It has a Frobenius norm

∥∥Ui, j
∥∥

F = 1; (2) F(Ui, j) has up to two non-zero elements lo-
cated at (i, j) and its conjugate symmetric component (symmetric relative to the origin of the
spectrum). We refer to such a matrix Ui, j as a 2D Fourier basis at (i, j).
Fourier Heatmaps. We denote a batch of B images as I, the Fourier basis perturbation
factor by α , and a uniformly and randomly sampled matrix from {−1,1} by r, where 1
is the matrix of all ones in Rd1×d2 . Let Ĩ denote the perturbed batch of images, where
Ĩ = I+α(r⊙Ui, j) , ⊙ is the Hadamard product. Note that the addition is performed across
all channels of images in the batch. To measure the sensitivity of a classification DNN to
the frequency basis at (i, j), we forward pass the perturbed batch Ĩ through the DNN and
compute its output error rate w.r.t. the ground truth image labels for the specified (i, j) basis.
When repeated for all (i, j) pairs, we can visualize the DNN’s sensitivity to all 2D Fourier
bases through a matrix denoted as a Fourier heatmap [52] (see Figure 1a for an example).

4 Proposed Method
Following [4, 16, 33, 41, 50, 58], we consider the threat model, in which the victim out-
sources the training process to a trainer that has access to: (1) the victim’s network architec-
ture and (2) their training dataset. The victim accepts the model provided by the adversary if
its classification accuracy on the validation set is satisfactory.

Now we provide a detailed explanation of the proposed frequency-based backdoor at-
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tack pipeline. As explained in Section 3, Fourier heatmaps provide a tool for analyzing the
sensitivity of a DNN to input perturbations in particular 2D Fourier bases. Knowledge of
the network’s sensitive frequencies allows the attacker to design an attack that exploits these
frequencies to embed a frequency-based backdoor that maintains a good performance on the
original classification task, embeds a strong backdoor trigger that activates the target class at
will, and is both invisible and achievable with small poisoning rates. Figure 2 visualizes the
proposed pipeline. Below we summarize the recipe for creating frequency-based backdoors.
Stage 1: Poisoning Filter Generation: 1. Train a neural network on the clean dataset
and the architecture provided by the user. We denote this clean network by f0. 2. Generate
the Fourier heatmap for f0 and store the indices of the top-k most sensitive frequencies, Ik,
and then generate a binary mask M as shown in equation 1. 3. Generate three additive
frequency masks one for each channel (AR, AG and AB) as shown in equation 2. The values
for additive masks Ai, j for (i, j)∈ Ik should be selected to satisfy the invisibility requirement
at hand (discussed later in Section 5.2). For a simple yet flexible design, we set the nonzero
values in any individual additive mask to be the same, but different from one mask to another.

Mi, j =

{
1 (i, j) ∈ Ik

0 otherwise
(1) A{R,G,B}i, j

{
̸= 0 (i, j) ∈ Ik

= 0 otherwise
(2)

Stage 2: Creating the Backdoor through Data Poisoning: 1. Specify a set of samples to
poison and denote it by IP. The cardinality of IP is denoted by |IP| and refers to the number
of poisoned samples. The poisoning rate is defined as the ratio of the number of poisoned
samples to the total number of samples in the training set. 2. For each sample S ∈ IP, and
for each channel, apply the following operations:

S{R,G,B} := F−1(F(S{R,G,B})⊙ (1−M)+A{R,G,B}) (3)

where each channel is treated separately. 3. Change the label of the samples in IP to the
specific target label t. 4. Proceed with training the neural network on the poisoned training
dataset to obtain a backdoored or poisoned model f .

It should be noted that the operations carried out on the Fourier transformed channels
could be thought of as simply changing the values of the components of the top-k most sen-
sitive 2D Fourier bases by different values that carry the poisoning information. This could
be thought of as a frequency-based version of spatial trigger stamping. Section 5.5 discusses
the importance of choosing the top-k values rather than random or bottom-k elements. The
supplementary material contains variants of the proposed method. It includes experiments,
where additive masks have (1) varying random values for each channel and (2) the same
values across all channels. We also consider adopting a binary mask (M) generated for
one architecture and applying it as a poisoning mask for another. Additionally, we discuss
two possible variations of the pipeline that (1) extend the applicability of our attack to the
multi-target attack regime; (2) allow for an efficient end-to-end frequency backdoor attack.

5 Experiments
In this section, we present the details of our implementation and experiments to evaluate our
proposed attack mechanism on various datasets and network architectures. Afterwards, we
evaluate our attacked models against three state-of-the-art defenses (three more are found
in the supplementary). Finally, we show two defenses against frequency-based backdoor
attacks and potential ways for the attacker to defend against them.
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Figure 3: Fourier Heatmaps and Top-k Masks. Rows 1 shows the heatmaps of various
architectures trained on CIFAR10 and GTSRB, respectively. Rows 2 shows the respective
binary mask (M), which defines the k most sensitive frequencies in the heatmap.

5.1 Implementation Details Poisoning Rate CDA(%) ASR(%)
0.0% 93.92 -
0.1% 94.00 1.54
0.2% 94.14 72.31
0.4% 94.20 85.05C

IF
A

R
10

1.0% 94.38 99.44
3.0% 94.31 99.79
0.0% 75.95 -
0.1% 75.76 60.57
0.2% 75.75 92.78
0.4% 75.92 96.49

C
IF

A
R

10
0

1.0% 76.05 98.99
3.0% 75.36 99.93
0.0% 97.11 -
0.1% 97.09 71.12
0.2% 97.19 89.59
0.4% 97.33 98.04G

T
SR

B

1.0% 97.25 98.62
3.0% 97.47 99.80
0.0% 67.51 -
0.5% 67.38 0.17
1.0% 67.13 87.74

Im
ag

eN
et

2.0% 67.26 98.01
3.0% 67.26 98.32

Table 1: Evaluation of the pro-
posed backdoor attack. We
benchmark our proposed attack for
ResNet18 trained on various datasets
and poisoning rates. Our attack
can maintain CDA, while registering
high ASR even with small poisoning
rates ( full table in suppl.).

Following [10, 37, 43, 56] we evaluate our attack on
various datasets, network architectures, and poison-
ing rates.
Datasets. We evaluate our proposed pipeline on
commonly used datasets: CIFAR10 [25], CI-
FAR100 [25], GTSRB [20], and ImageNet [40].
Network Architectures. We study six network ar-
chitectures of different complexity: ResNet18,
ResNet34, ResNet50 [19], DenseNet121 [22],
VGG19 [45], and WideResNet34 [53]. Network
Performance Metrics. To evaluate the performance
of backdoored models, we use two common metrics:
Clean Data Accuracy (CDA), which measures the
performance of the network on clean samples, and
Attack Success Rate (ASR), which measures the ef-
fectiveness of the backdoor attack in triggering the
target label. Invisibility Metrics. Following other pa-
pers [21, 29, 35, 37, 48, 56], we evaluate the in-
visibility of the proposed attack using three metrics:
Peak Signal-to-Noise-Ratio (PSNR), Structural SIM-
ilarity (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS). Invisibility is a crucial metric for
backdoor attacks, as it is required to fool any possible
human inspection that may detect the applied trigger.

5.2 Frequency-Based Backdoor Attacks
Backdoored Network Performance. As discussed in Section 4, we first train baseline net-
works on each dataset and compute the corresponding Fourier heatmaps and binary masks.
The accuracies of the baseline models ( f0) are shown in Table 6 (0% Poisoning Rate). The
heatmaps and masks for various architectures trained on CIFAR10 and GTSRB are shown
in Figure 3, respectively. The remaining filters and heatmaps are provided in the supple-
mentary material. In our experiments, the choice of k, which defines the number of nonzero
indices of M and the corresponding values for the additive masks A{R,G,B}, is made such
that: (1) the ℓ2 norm of the attack (i.e the ℓ2 norm of the absolute difference of the im-
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age before and after poisoning) does not exceed, on average, a threshold δP (δP = 2.0
for ImageNet and δP = 1.0 for all other datasets), and (2) the invisibility metrics (PSNR,
SSIM, LPIPS) reach satisfactory values. Table 6 shows the CDA of the backdoored model
( f ) and the ASR of frequency-based triggers for CIFAR10, CIFAR100, GTSRB, and Ima-
geNet and for ResNet18 with different poisoning rates. Similar to [56], we also highlight
the effect of changing the poisoning rate on the CDA and ASR metrics. As observed, even
with a low poisoning rate, we can embed a backdoor attack with a high ASR with little or
no drop in CDA. The target label was arbitrarily chosen as the first class of each dataset.
Since the datasets are class-balanced, any target label will lead to a similar performance.

Method PSNR↑ SSIM↑ LPIPS↓
BadNets [16] 27.03 0.9921 0.0149
Blend [5] 19.18 0.7291 0.2097
SIG [1] 25.12 0.8988 0.0532
Refool [35] 16.59 0.7701 0.2461
SPM [30] 38.65 0.9665 0.0022
Poison Ink [56] 41.62 0.9915 0.0020
FTrojan [48] 44.87 0.9942 0.0005
FIBA [11] 18.05 0.8077 0.1113
Ours (ResNet18) 47.26 0.9998 0.0006
Ours (ResNet34) 47.55 0.9998 0.0004
Ours (ResNet50) 46.90 0.9998 0.0009
Ours (DenseNet121) 47.21 0.9998 0.0001
Ours (VGG19) 46.19 0.9998 0.0008

Table 2: Comparing Invisibility
Metrics of Backdoor Attacks on
ImageNet. Our attack achieves the
best invisibility scores compared to
other existing methods.

Table 20 compares our method with existing spa-
tial and frequency backdoor attacks. The results
for SIG, Refool, SPM, and Poison Ink are taken
from [56]. Our frequency-based backdoor attack
achieves SOTA results in almost all scenarios con-
sidered. Note that the training setup adopted to gen-
erate our results is the same for all other methods.
A further comparison with other backdoor attacks is
provided in the supplementary.
Invisibility of the Proposed Attack. Table 2 com-
pares our proposed frequency-based backdoor attack
with other attacks based on their invisibility met-
rics (PSNR,SSIM,LPIPS). The results of the other
methods are taken from [56] (except for [11, 48]).
Our proposed attack achieves the highest PSNR and
SSIM, and the lowest LPIPS compared to other backdoor attacks. The PSNR of our method
could be further improved at the cost of ASR by selecting fewer frequencies to poison; how-
ever, the invisibility metrics (PSNR, SSIM, LPIPS) “saturate” beyond a certain point where
further improvements become insignificant and unneeded.

5.3 Evaluation Against Backdoor Defenses

We evaluate our attacked models against three SOTA backdoor defenses, namely, Neural
Cleanse [47], Grad-CAM [44], and Pruning [32]. Being invisible and dynamic in the spatial
domain, frequency-based backdoor attacks can easily evade SOTA defenses. The results
of the three defenses against our attacked ResNet18 model trained on CIFAR10 with 1%
poisoning rate are shown in Figure 4. Figure 4a shows the Grad-CAM [44] results for two
images and their backdoor attacked versions using our frequency-based approach. Grad-
CAM uses gradients of a particular class to visualize where the network is looking/focusing
at to make its prediction. As shown in Figure 4a, our frequency-based backdoor attacks do
not introduce an observable change in the “attention" of the network. For each of the two

Table 3: Comparison between the Proposed Attack and Backdoor Attacks in the Liter-
ature. Our frequency-based attack achieves SOTA ASR, CDA, PSNR, and LPIPS metrics.
The results shown are for VGG19 trained on CIFAR10. Legend: First Best, Second Best

Metric Ratio SIG Refool SPM WaNet FIBA FTrojan Poison Ink Ours

CDA/ASR
3% 89.74 / 99.23 89.20 / 87.16 88.89 / 58.53 91.86 / 32.86 90.92 / 90.10 91.31 / 99.99 89.65 / 94.22 92.31 / 99.43
5% 89.64 / 99.47 89.16 / 89.79 88.90 / 57.69 91.47 / 88.15 90.69 / 95.06 91.64 / 99.10 89.69 / 93.58 91.88 / 99.88

10% 89.45 / 99.40 88.80 / 92.80 89.07 / 57.33 91.22 / 96.96 90.41 / 95.86 90.93 / 100.00 89.47 / 93.67 92.10 / 99.97
PSNR↑/LPIPS↓ 25.12 / 0.0400 19.38 / 0.0397 38.94 / 0.0001 31.53 / 0.0047 19.40 / 0.0180 41.01 / 0.0001 42.95 / 0.0001 43.15 / 0.00001
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Figure 4: Evaluation of defenses: Evaluation of various SOTA defenses against the pro-
posed frequency-based attack shows the power of the proposed method in evading the de-
fenses. (a) Grad-CAM shows high similarity in the attention regions for poisoned and non-
poisoned models; (b) Pruning the poisoned model maintains high ASR even after significant
drop in CDA. (c) Neural Cleanse anomaly indices fall below the anomaly threshold (2.0).

(a) Grad-CAM [44] (b) Pruning [32] (c) Neural Cleanse [47]

samples presented (first column), we compute the Grad-CAM by passing the clean samples
into the clean network ( f0) (middle column), and then show the Grad-CAM for passing the
poisoned samples into the backdoored model ( f ) (third column).

Since the network still focuses on the same parts of the input image, methods like Februus
[8] fail to remove the embedded backdoor, as observed by [56]. Figure 4b shows the per-
formance of our attack against the pruning defense in [32], which prunes the least active
neurons (on clean samples) and then fine-tunes the network on clean samples.

We see that pruning our backdoored model does not eliminate the backdoor. This is
mainly attributed to the fact that frequency-based poisoning is of low norm and therefore
gets embedded into most weights of the network rather than hidden into particular neurons.
Figure 4c shows the anomaly index computed by Neural Cleanse [47] for both the baseline
and our backdoored/poisoned model. Since the anomaly index of the poisoned model is less
than the anomaly index threshold defined by Neural Cleanse (2.0), Neural Cleanse fails to
detect that the frequency-based backdoored model is actually poisoned. Further evaluation
of these defenses and evaluation of additional defenses, namely, STRIP [12], Spectral Sig-

JPEG Autoencoder JPEG+Autoencoder
Poisoning Rate CDA ASR CDA ASR CDA ASR

C
IF

A
R

10

0.1% 94.19 1.76 93.73 0.22 94.65 0.66
0.2% 94.37 18.02 94.38 22.86 94.22 3.08
0.5% 93.94 83.52 94.17 73.85 94.49 36.48
1.0% 94.28 96.48 94.61 93.63 94.24 90.11
3.0% 94.26 99.34 94.13 98.90 94.32 98.46

C
IF

A
R

10
0 0.1% 76.57 14.26 76.19 14.06 76.05 2.57

0.2% 77.14 75.25 75.96 83.76 75.40 32.08
0.5% 75.86 95.25 76.07 94.06 76.35 95.05
1.0% 75.43 99.21 75.57 97.82 76.16 96.83
3.0% 75.07 99.80 76.26 99.54 75.51 98.81

G
T

SR
B

0.1% 97.27 52.46 97.45 69.55 96.97 48.13
0.2% 96.79 74.07 97.39 81.14 97.09 73.87
0.5% 97.25 90.18 97.14 94.50 96.84 95.09
1.0% 94.34 86.44 97.00 99.02 95.56 94.89
3.0% 93.72 98.43 97.25 99.78 92.99 97.64

Table 4: Augmentation Defense: CDA and ASR of backdoored ResNet18 trained on var-
ious datasets with JPEG compression and Autoencoder augmentation. The ASR and CDA
are maintained even when no preprocessing technique is used.
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natures [46], and Activation Clustering [3] on different models and datasets is provided in
the supplementary.

5.4 Defenses Against Frequency-based Backdoors
Since the additive mask values could be arbitrarily chosen, a simple inspection of the Fourier
transforms of the input may not be successful in detecting the poisoned samples. Therefore,
we discuss two possible ways to defend against frequency backdoor attacks.

Figure 5: Defending with JPEG Aug-
mentation. Training on JPEG compressed
images maintains a high ASR even after a
drop of 10% in CDA. The baseline denotes
the CDA of the baseline model evaluated
on compressed images.

For a successful defense, the defender
should manipulate the frequency spectrum of
the input images to break the backdoor trig-
ger while maintaining a satisfactory CDA. We
show that this is possible using two techniques:
(1) passing the image through an autoencoder
and (2) compressing the image. These two
methods are used in the robustness literature
and have proven to be useful in protecting
DNNs from adversarial attacks [6, 7]. Autoen-
coders have also been used as a preprocessing
mechanism to disable backdoor triggers [36].
Applying an autoencoder trained on CIFAR10
can almost completely deactivate the embed-
ded frequency backdoor. A similar effect is
observed for compression, where the ASR of
the backdoored model drops to almost 0% af-
ter 20% of JPEG compression.

A possible solution to bypass both of these defenses is to apply a technique similar to
adversarial training [14, 55]. The attacker can train on compressed and/or auto-encoded ver-
sions of the poisoned images. This augmentation translates to embedding multiple versions
of the backdoor into the model. Figure 5 shows the ASR and CDA for both an undefended
poisoned model and a defended one. For the undefended model, i.e no augmentation, the
backdoor immediately breaks down as compression is applied. On the other hand, the de-
fended model can maintain an ASR > 80% even beyond 25% compression, where the CDA
drops by 10%. Finally, we note that the above augmentations still allow us to reach a high
ASR with a minimal drop in CDA for our backdoored models. Therefore, if the defender
does not set a defense mechanism, the backdoor still functions properly. The results for
ResNet18 trained on CIFAR10, GTSRB, and CIFAR100 with different augmentations are
shown in Table 4. The results for other models and datasets are presented in the supplemen-
tary material.

5.5 Ablation Study Poisoning Rate 1% 2%
Random (1)

CDA(%)/ASR(%)

67.24/53.91 66.83/60.49
Random (2) 67.23/56.88 66.80/66.11
Bottom-k (1) 67.03/22.58 66.80/55.96
Bottom-k (2) 67.04/0.31 67.02/92.81

Top-k (1) 67.13/87.74 67.26/98.01

Table 5: Effect of Different Frequency Selection
Schemes: Results for frequency filters generated us-
ing least sensitive, most sensitive and random fre-
quencies. Choosing the top-k most sensitive frequen-
cies provides the highest ASR among those options.

We study the effect of choosing (i)
random frequencies and (ii) bottom-
k, i.e least sensitive frequencies, as
compared to choosing the top-k fre-
quencies from the Fourier heatmap.
Table 5 shows the results of poi-
soning a ResNet18 trained on Im-
ageNet using two different random
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(a) (b) (c) (d)

Figure 6: Heatmaps of Ablated Frequency Selection: Fourier heatmaps of frequency-
based backdoor attacks with different frequency selection schemes: (a) Clean Model; (b)
Random Frequency Selection; (c) Bottom-k Frequency Selection; (d) Proposed Top-k Fre-
quency Selection.

filters and two different bottom-k filters (two different values were chosen for k to control
the PSNR), where the runs for a particular scheme are numbered in brackets. The random
filters were generated using Bernoulli trials with p = 0.005 at each Fourier basis (Random
(1): PSNR = 47.62/ Random (2): PSNR = 46.62). Bottom-k filters were generated by se-
lecting the k-least sensitive frequencies (Bottom-k (1): PSNR = 51.23 /Bottom-k (2): PSNR
= 31.23). In general, bottom-k and random frequencies contain low frequency components,
which greatly affect the invisibility of the attack.

One can see the importance of choosing top-k frequencies over the other two options,
as it leads to a high ASR at a small poisoning rate while maintaining a high PSNR. This is
attributed to the fact that the network relies on the most sensitive frequencies to perform the
classification task at hand. Therefore, embedding a backdoor attack into the most sensitive
frequencies allows the network to learn the backdoor trigger with little effort, compared to
other frequency selection schemes.

Finally, an interesting observation can be made by looking at the Fourier heatmaps of
these models. Figure 6 visualizes the Fourier heatmaps for Random (2), Bottom-k (2), and
Top-k models. We can see a significant explosion in frequency sensitivity in the case of se-
lecting the bottom-k components and “chicken-pox" like sensitivity for the random frequency
selection (dotted in the positions of randomly sampled frequency bases). Our method of us-
ing the top-k most sensitive frequencies is more conservative in introducing modifications to
the network’s clean heatmap; however, it also experiences mild “sensitivity leakage" at cer-
tain frequencies. The supplementary shows the Fourier heatmaps for other backdoor attacks
and provides a discussion about detecting backdoor attacked models using Fourier heatmaps.

6 Conclusion
In this work, we proposed a new frequency backdoor attack that takes advantage of the
natural frequency sensitivity of the DNN. Through extensive experiments, we showed the
effectiveness of the proposed attack in embedding imperceptible backdoors that can evade
existing defenses while achieving both a high ASR and a CDA. We also laid the foundations
for future defenses against frequency-based backdoor attacks through (1) data preprocessing
using autoencoders and compression; and (2) Fourier heatmap visualization.
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Supplementary Material

A Introduction to Supplementary Material
In this supplementary material, we present the extended results and variants of the proposed
frequency-based backdoor attack. Section B shows the full version of Table 1 from the main
paper, this includes evaluation of the proposed pipeline on additional network architectures.
Section C presents an extended evaluation of the proposed augmentation in Section 5.4 of the
main paper (similar to Table 4). Section D discusses different design choices for the additive
filters AR,G,B. In section E we extend the applicability of the proposed attack to the mul-
titarget attack regime. Section F presents a more efficient variant of the proposed method.
Section G shows the result of applying a binary and an additive filter generated from one
model to poison another. Section H visualizes the proposed backdoor attack in the spatial
domain, showing that the attack is highly dynamic. Section I displays the Fourier heatmaps
and top-k selected frequencies (binary masks) for various datasets and architectures. Section
J shows the Fourier heatmaps for different spatial backdoor attacks, highlighting a new pos-
sible defense against backdoor attacks. Section K presents a further evaluation of the spatial
defenses discussed in the manuscript and presents three additional defenses, namely, STRIP
[12], Spectral Signatures [46], and Activation Clustering [3]. Section L, shows an evalua-
tion of the proposed defense against other frequency backdoor attacks. Section M presents a
further comparison of our proposed attack against existing spatial backdoor attacks. Finally,
section N provides insights about the relationship between the model’s learning capacity and
the capability of embedding a backdoor attack into the model.
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B Evaluation of the Proposed Backdoor Attack

ResNet18 ResNet34 ResNet50 DenseNet121 VGG19 WideResNet34

Poisoning Rate CDA ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA ASR

CIFAR10

0.0% 93.92 - 94.59 - 94.10 - 94.70 - 92.47 - 95.33 -

0.1% 94.00 1.54 94.49 0.83 94.48 53.63 94.94 86.98 92.63 0.44 95.73 84.91

0.2% 94.14 72.31 94.26 66.46 94.45 87.91 94.54 95.77 92.39 0.44 95.42 96.89

0.4% 94.20 85.05 94.33 90.97 94.37 95.38 94.89 96.48 92.17 1.62 95.48 99.34

1.0% 94.38 99.44 94.44 91.75 94.32 99.34 94.83 98.70 91.95 99.39 95.70 99.80

3.0% 94.31 99.79 94.41 99.64 94.31 99.36 94.94 99.89 91.89 99.81 95.44 99.99

CIFAR100

0.0% 75.95 - 75.66 - 77.36 - 78.98 - 67.45 - 79.55 -

0.1% 75.76 60.57 76.76 65.18 76.73 42.18 78.34 73.47 67.78 0.40 79.84 43.96

0.2% 75.75 92.78 74.79 84.09 77.87 78.21 79.1 89.31 67.72 0.59 79.24 78.42

0.4% 75.92 96.49 76.25 99.29 77.69 83.96 79.1 92.67 67.61 0.20 79.14 87.33

1.0% 76.05 98.99 74.95 99.44 77.12 90.49 78.6 96.44 65.84 0.40 79.14 98.02

3.0% 75.36 99.93 76.51 99.84 76.58 98.61 78.31 99.60 67.14 99.00 78.74 99.41

GTSRB

0.0% 97.11 - 97.00 - 97.23 - 97.22 - 96.23 - 97.76 -

0.1% 97.09 71.12 96.90 74.52 97.41 82.32 97.16 76.82 96.48 0.00 97.29 71.38

0.2% 97.19 89.59 97.06 83.69 97.14 86.25 97.11 99.61 96.74 0.20 97.64 88.74

0.4% 97.33 98.04 96.73 97.25 96.95 97.25 97.43 99.61 96.01 2.95 97.43 98.61

1.0% 97.25 98.62 97.03 99.61 97.22 98.04 97.17 99.61 96.27 88.41 96.87 99.76

3.0% 97.47 99.80 96.76 99.98 96.98 99.97 97.49 100.00 96.29 99.61 97.26 99.97

ImageNet

0.0% 67.51 - 70.86 - 73.35 - 74.10 - 72.11 - - -

0.5% 67.38 0.17 71.20 84.70 73.27 96.00 73.91 95.32 71.49 91.96 - -

1.0% 67.13 87.74 70.74 95.96 73.38 98.03 74.21 98.05 72.33 96.64 - -

2.0% 67.26 98.01 70.57 98.87 72.78 98.85 73.75 99.34 71.62 95.379 - -

3.0% 67.26 98.32 70.67 98.95 72.30 99.25 73.39 99.85 72.05 97.51 - -

Table 6: Evaluation of the proposed backdoor attack. We benchmark our proposed
frequency-based backdoor attack on different network architectures, datasets, and poisoning
rates. These results show that our attack can maintain clean data accuracy, while registering
high attack success rates even with small poisoning rates.

WideResNet34 was not included for ImageNet experiments as there is no official implementation of this model
in torchvision.models .
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C Evaluation of Augmented Models
The manuscript discusses two defense techniques against frequency-based backdoor attacks
and a simple technique to bypass them through training data augmentation. The results pre-
sented in the paper correspond to ResNet18 trained on CIFAR10, CIFAR100, and GTSRB.
Tables 7, 8 and 9 present the results for ResNet34, WideResNet34, and VGG19 trained on
the aforementioned datasets with training data augmentation. Based on these results, train-
ing data augmentation was shown to be a viable counter-attack to the proposed backdoor
defenses.

C.1 ResNet34

Autoencoder JPEG JPEG+Autoencoder
Poisoning Rate CDA ASR CDA ASR CDA ASR

0.1% 94.75 0.12 94.17 0.22 94.75 0.44
0.2% 94.49 0.88 94.75 2.86 94.26 1.32
0.4% 94.71 80.66 94.68 78.90 93.95 17.14
1.0% 94.30 95.82 94.49 87.91 94.11 92.53

CIFAR10

3.0% 94.51 98.46 94.47 97.58 94.50 94.73
0.1% 76.84 10.70 77.53 61.39 77.52 3.56
0.2% 76.08 19.41 76.55 84.55 76.39 38.81
0.4% 77.56 95.44 76.49 95.84 77.12 93.27
1.0% 76.98 99.60 77.20 96.63 77.31 97.22

CIFAR100

3.0% 76.53 99.61 76.26 99.60 76.43 99.00
0.1% 97.25 43.81 97.19 59.33 96.96 48.33
0.2% 96.96 88.02 97.18 86.64 97.05 78.78
0.4% 97.11 93.91 97.09 88.21 96.78 94.50
1.0% 95.25 91.16 96.84 97.05 93.99 80.35

GTSRB

3.0% 94.61 98.82 96.92 99.02 94.79 88.41

Table 7: Augmentation Maintains Performance (CIFAR10, CIFAR100 and GTSRB):
CDA and ASR of backdoored ResNet34 trained on CIFAR10, CIFAR100 and GTSRB with
JPEG compression and Autoencoder augmentation. Both ASR and CDA are maintained
even when no preprocessing technique is used.
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C.2 WideResNet34

Autoencoder JPEG JPEG+Autoencoder
Poisoning Rate CDA ASR CDA ASR CDA ASR

0.1% 95.70 63.96 95.40 69.01 95.63 1.98
0.2% 95.44 89.01 95.30 86.59 95.69 80.88
0.4% 95.26 97.14 95.57 88.57 95.32 85.49
1.0% 95.13 98.46 95.56 97.36 95.46 95.82

CIFAR10

3.0% 95.48 99.12 95.37 98.02 95.53 98.24
0.1% 79.15 25.94 79.27 19.60 79.31 8.71
0.2% 79.62 63.76 79.46 60.20 79.60 35.84
0.4% 79.72 87.92 79.19 79.41 79.36 79.60
1.0% 79.22 93.47 79.29 93.66 79.23 73.47

CIFAR100

3.0% 79.27 98.22 79.11 95.64 78.81 90.30
0.1% 97.70 54.03 97.51 60.12 97.47 48.72
0.2% 97.02 86.44 97.70 72.10 96.84 34.58
0.4% 95.72 80.75 96.96 97.64 93.84 80.16
1.0% 92.15 46.95 93.03 43.81 92.30 88.45

GTSRB

3.0% 93.12 93.52 90.63 78.19 89.46 89.78

Table 8: Augmentation Maintains Performance (CIFAR10, CIFAR100 and GTSRB):
CDA and ASR of backdoored WideResNet34 trained on CIFAR10, CIFAR100 and GTSRB
with JPEG compression and Autoencoder augmentation. Both ASR and CDA are maintained
even when no preprocessing technique is used.

C.3 VGG19

Autoencoder JPEG JPEG+Autoencoder
Poisoning Rate CDA ASR CDA ASR CDA ASR

0.1% 91.82 1.10 92.13 0.44 92.65 0.44
0.2% 92.39 0.66 92.28 0.66 92.36 0.88
0.4% 92.30 1.10 92.16 7.47 92.43 1.76
1.0% 92.04 89.89 92.60 97.36 92.16 86.15

CIFAR10

3.0% 92.52 99.56 92.21 100.00 91.89 98.90
0.1% 68.91 0.20 68.84 0.21 68.82 0.20
0.2% 68.24 0.59 68.71 0.40 68.76 1.19
0.4% 68.50 2.57 68.36 1.20 68.74 2.18
1.0% 68.36 8.91 68.12 4.95 68.12 7.37

CIFAR100

3.0% 67.70 98.02 68.12 97.82 68.14 95.05
0.1% 96.69 0.00 96.33 0.00 96.81 0.00
0.2% 96.39 0.20 96.43 0.20 96.62 0.79
0.4% 95.87 0.00 96.04 0.00 95.98 24.36
1.0% 95.63 88.61 96.00 91.55 96.28 89.00

GTSRB

3.0% 96.22 99.41 95.82 98.82 95.97 100.00

Table 9: Augmentation Maintains Performance (CIFAR10, CIFAR100 and GTSRB):
CDA and ASR of backdoored VGG19 trained on CIFAR10, CIFAR100 and GTSRB with
JPEG compression and Autoencoder augmentation. Both ASR and CDA are maintained
even when no preprocessing technique is used.
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D Choice of Additive Filters AR,G,B

The results presented in the manuscript set the values of the additive filters to be the same
within the channel but different across the channels. We now consider different possible
design choices for this additive filter, namely, choosing random or same values (within and
across channels) for AR,G,B. Tables 10 and 11 both show high ASR and CDA for different
choices of AR,G,B illustrating the flexibility of the proposed method in creating backdoor
attacks.

D.1 Random Values for AR,G,B

ResNet18 ResNet34 VGG19
Poisoning Rate CDA(%) ASR(%) CDA(%) ASR(%) CDA(%) ASR(%)

0.1% 92.93 2.64 93.23 0.88 92.12 2.20
0.2% 92.83 37.80 93.28 11.21 91.86 22.20
0.4% 93.16 90.11 93.49 93.19 92.18 56.68
1.0% 93.04 97.58 93.20 98.90 92.26 95.60
3.0% 93.21 99.56 93.29 99.78 92.28 98.90

Table 10: Random Additive Filter Values. Evaluating the proposed backdoor attack using
random additive filter values shows that our attack can maintain clean data accuracy while
reaching high attack success rates with small poisoning rates.

D.2 Same Value for AR,G,B

ResNet18 ResNet34 VGG19
Poisoning Rate CDA(%) ASR(%) CDA(%) ASR(%) CDA(%) ASR(%)

0.1% 93.01 1.76 93.55 1.32 91.93 1.54
0.2% 92.95 66.59 93.33 22.64 92.15 29.45
0.4% 92.89 92.08 93.31 93.85 91.80 66.37
1.0% 93.18 98.24 93.42 98.46 92.10 97.14
3.0% 92.87 99.56 93.06 99.34 91.94 99.12

Table 11: Same Additive Filter Values. Evaluating the proposed backdoor attack using
same additive filter values (across and within channels) shows that our attack can maintain
clean data accuracy while reaching high attack success rates with small poisoning rates.
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E Multi Target Attacks in the Frequency Domain
The manuscript focuses on creating single-target backdoor attacks. We extend the applica-
bility of the proposed frequency-based backdoor attack to the multitarget regime. This is
done through introducing an additional step to the recipe:

1. Select the top-k frequencies (most sensitive).

2. Randomly and equally divide the selected frequencies among the poisoned classes
creating a binary mask for each.

3. Create a set of additive filters for each poisoned class.

4. Poison each class with its corresponding additive filter and binary mask.

5. Proceed with training.

Figure 7 shows the binary masks for the two poisoned classes of ResNet18 trained on
CIFAR10; Table 12 shows the results for poisoning the first 2 classes of CIFAR10 for various
network architectures.

Figure 7: Multitarget (2 classes) Binary Filters for ResNet18 on CIFAR10. The top-k
selected frequencies to poison are divided equally and randomly to create two binary masks
one for each poisoned class.

ResNet18 ResNet34 VGG19
Poisoning Rate CDA(%) ASR-0 (%) ASR-1 (%) CDA(%) ASR-0 (%) ASR-1 (%) CDA(%) ASR-0 (%) ASR-1 (%)

0.1% 93.09 1.76 1.27 93.32 0.88 0.21 91.81 1.54 1.06
0.2% 92.76 32.31 28.23 93.24 10.32 10.82 91.97 8.13 9.98
0.4% 92.89 96.70 87.69 93.59 86.59 72.40 91.90 61.53 69.21
1.0% 93.09 98.90 96.60 93.59 98.46 97.88 92.17 92.75 94.90
3.0% 92.87 99.86 99.57 93.18 99.78 99.79 91.93 98.68 99.15

Table 12: Multitarget Frequency-Based Backdoor Attack. The proposed multitarget vari-
ant of the frequency-based backdoor attack can successfully poison the first two classes of
CIFAR10 on various network architectures using small poisoning rate. ASR-0 and ASR-1
denote the attack success rate for triggering classes 0 and 1 respectively.
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F End-to-End Pipeline: A More Efficient Variant
In this section, we present a more efficient variant of the proposed method. The method
proposed in the manuscript requires training two models: (1) a clean model ( f0) for which the
Fourier heatmap is computed for; and (2) a poisoned model ( f ) which utilizes the heatmap
generated from the clean model to poison the data and hence embed the backdoor.

Our method could be modified so that only one model is trained, the modified version is
summarized below:

1. Train a model on clean samples until a reasonable performance is reached. We denote
this checkpoint by C0.

2. Generate the Fourier heatmap for C0 and select the top-k most sensitive frequencies to
generate the binary mask M and the additive filters AR,G,B.

3. Poison the data using equations (4), (5) and (6) presented in the manuscript and pro-
ceed with training C0 on both poisoned and clean samples. The obtained model is the
poisoned model f .

Table 13 shows the results of using the "end-to-end" variant of the proposed frequency-
based backdoor attack. The obtained results are fairly similar to those shown in Table 6.
Figure 8 shows the Fourier heatmaps of the clean and poisoned models for the proposed
variant (ResNet18 trained on CIFAR10). As required, the Fourier heatmap of the poisoned
model is similar to that of the clean model.

ResNet18 ResNet34 VGG19
Poisoning Rate CDA(%) ASR(%) CDA(%) ASR(%) CDA(%) ASR(%)

0.1% 93.19 3.08 93.82 0.88 92.24 0.44
0.2% 93.46 48.13 93.65 3.95 91.98 5.49
0.4% 93.38 83.51 93.43 89.89 92.09 28.79
1.0% 93.25 96.04 93.45 85.05 92.45 81.75
3.0% 93.31 98.02 93.34 99.12 92.51 96.26

Table 13: End-to-End Pipeline Evaluation. The proposed end-to-end variant of the
frequency-based backdoor attack achieves both a high clean data accuracy and a high at-
tack success rate.
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(a) Heatmap of
Clean Model

(b) Heatmap of Poi-
soned Model

Figure 8: End-to-End Variant Maintains Fourier Heatmaps. Utilizing the end-to-end
frequency-based backdoor attack allows us to obtain a backdoored model with a Fourier
heatmap similar to that of the clean model.
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G Cross Filter Frequency-Based Backdoor Attack
In this section, we show the capability of utilizing binary masks and additive filters gen-
erated for one architecture to backdoor attack another. As expected, one can reach a high
attack success rate (for a high enough poisoning rate) using such masks and filters (Check
Ablation-Section 5.5 in manuscript); however, one has no guarantee over maintaining a
Fourier heatmap similar to the clean model.

Table 14 shows the CDA and ASR of a ResNet18 trained on CIFAR10 poisoned using
binary masks and additive filters of WideResNet34, ResNet34, and VGG19.

Filter & Mask Source WideResNet34 ResNet34 VGG19
Poisoning Rate CDA(%) ASR(%) CDA(%) ASR(%) CDA(%) ASR(%)

0.0% 93.28 5.27 93.10 1.98 93.00 5.93
0.1% 92.93 2.86 92.75 35.82 92.81 50.77
0.4% 93.17 93.63 93.14 95.16 92.79 95.16
1.0% 93.08 99.12 93.24 98.46 92.80 96.92
3.0% 92.74 100.00 92.94 99.78 92.85 99.34

Table 14: Cross Filter Backdoor Attack Evaluation. Evaluating different binary masks
and additive filters generated for WideResNet34, ResNet34, and VGG19 for attacking
ResNet18 on CIFAR10.
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H Spatial Visualization of the Proposed Frequency-based
Backdoor

Attack
In this section, we visualize the scaled absolute difference (D) of non-poisoned images (I)
and poisoned images (IP) defined as:

D = γ|I −IP| (4)

where |.| of a matrix denotes element-wise absolute value operation and γ is a scalar
multiplier in R. Figures 9 and 10 visualize two sets of non-poisoned images, their poisoned
counterparts, and the absolute scaled difference with γ = 50 for ResNet18 and ResNet34
(recall that our attack is model dependent).

I

IP (ResNet18)

D (ResNet18)

IP (ResNet34)

D (ResNet34)

Figure 9: Spatial Visualization of Proposed Attack. Visualization of the absolute scaled
difference shows how dynamic the proposed attack. The poisoned images show the imper-
ceptibility of the attack.
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I

IP (ResNet18)

D (ResNet18)

IP (ResNet34)

D (ResNet34)

Figure 10: Spatial Visualization of Proposed Attack. Visualization of the absolute scaled
difference shows how dynamic the proposed attack. The poisoned images show the imper-
ceptibility of the attack.



HAMMOUD, GHANEM: CHECK YOUR OTHER DOOR! 27

I Fourier Heatmaps

Figure 11: Fourier Heatmaps and Top-k Filters. Fourier heatmaps for various architectures
and datasets along with their top-k selected frequencies for the binary mask.

WideResNet34 was not included for ImageNet experiments as there is no official implementation of this model
in torchvision.models .
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ResNet18 ResNet34 ResNet50 VGG19 DenseNet121 WideResNet34
CIFAR10 9.77% 9.77% 11.72% 9.77% 16.61% 14.65%

CIFAR100 15.62% 19.53% 9.77% 19.53% 15.63% 15.63%
GTSRB 8.79% 8.79% 2.92% 3.90% 4.88% 8.80%

ImageNet 1.99% 1.59% 0.99% 0.90% 1.99% -

Table 15: Percentage of Poisoned Frequencies. Different models and datasets require poi-
soning different percentages of the Fourier bases to achieve a balance between stealthiness,
attack success rate and clean data accuracy.

Figure 11 shows all the Fourier heatmaps and the binary masks generated for poisoning
the different models on all datasets. Table 15 shows the percentage of poisoned frequencies
for each binary mask.
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J Fourier Heatmap as a Backdoor Detector
As shown in the manuscript, if the choice of poisoned frequencies is not carried out properly,
a simple check on the Fourier heatmap of the obtained model could expose the attacker (an
abnormal trend is observed in the heatmap). Figures 12a, 12b, 12c and 12d show the Fourier
heatmaps of clean ResNet18, top-k poisoned ResNet18, BadNet [16] poisoned ResNet18,
and Blend [5] poisoned ResNet18, respectively. BadNet represents the first backdoor attack
in the literature and is based on poisoning data by applying a white patch to the corner of a
subset of the training set. Blend on the other hand, was the first to recognize the importance
of imperceptibility and suggested blending images with the poison trigger for a more stealthy
attack. Figures 12c and 12d show that both BadNets and Blend tend to highly change the
frequency sensitivity of the attacked model compared to the clean one and hence could be
detected as poisoned models by inspecting their heatmaps. The proposed frequency-based
backdoor attack is more conservative and introduces only mild changes to the clean model
heatmap and therefore are less detectable as poisoned.

(a) Clean Model Heatmap (b) Top-k Poisoned Model
Heatmap

(c) BadNet [16] Model
Heatmap

(d) Blend [5] Model Heatmap

Figure 12: Fourier Heatmap As a Backdoor Detector. BadNet and Blend poisoned models
introduce more significant changes to the clean heatmap as compared to the proposed top-k
frequency-based backdoor attack. These heatmaps could be exploited as means to detecting
whether a model is poisoned or not.
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(a) Clean Model Heatmap (b) Top-k Poisoned Model
Heatmap (Ours)

(c) BadNet [16] Model
Heatmap

(d) Blend [5] Model Heatmap (e) Clean Label [? ] Model
Heatmap

(f) RE [? ] Model Heatmap

Figure 13: Fourier Heatmap As a Backdoor Detector. Various spatial backdoor attacks
introduce more significant changes to the clean heatmap as compared to the proposed top-k
frequency-based backdoor attack. These heatmaps could be exploited as means to detecting
whether a model is poisoned or not.

Similarly, this inspection could be applied for models trained on small image datasets
such as CIFAR10. Figures 13a, 13b, 13c, 13d, 13e and 13f show the Fourier heatmaps for
ResNet18 trained on CIFAR10 with different poisoning strategies. Our proposed method
maintains the highest similarity to the clean model’s Fourier heatmap as compared to other
methods.
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K Evaluation Against Backdoor Defenses
In this section, we provide a further evaluation of the spatial defenses presented in the
manuscript. We also evaluate our method against additional defenses, namely, STRIP [12],
Activation Clustering [3] and Spectral Signatures [46].

Recall that Grad-CAM uses gradients of a particular class to visualize where the network
is looking/focusing at to make its prediction. [32] prunes the least active neurons (on clean
samples) and then fine-tunes the network on clean samples. STRong Intentional Pertubation
(STRIP) [12] intentionally perturbs the input through blending it with clean samples. The
authors rely on the realization that blending a poisoned sample with a clean sample would
still activate the backdoor attack and therefore studying the entropy of the prediction vectors
could be used for backdoor detection. Activation Clustering (AC) [3] analyzes the neural
network’s representation layer activation to determine whether the data has been poisoned.
Since a poisoned model assigns poisoned and clean data to the target class based on a differ-
ent feature representation, one can cluster the representations of the poisoned class into two
distinct clusters. Similar to AC, Spectral Signatures (SS) [46] operates on feature represen-
tations to detect backdoor attacks. SS detects the poisoned samples using robust statistics
and SVD methods.

Figures 14 and 15 show a set of images visualizing the original image, the Grad-CAM for
a clean network evaluated on the clean sample, and the Grad-CAM for a poisoned network
evaluated on the poisoned sample (left to right) for GTSRB and ImageNet respectively (the
network architecture is ResNet18). As shown in the manuscript, the network focus regions
are relatively unchanged when the frequency-based poison is applied.

Figure 16 shows the result of pruning a ResNet34 trained on ImageNet. Again, as ob-
served in the manuscript (for CIFAR10), the attack success rate of the frequency-based back-
door is maintained for large pruning rates that highly drop the clean data accuracy.

Figure 17 shows the results of applying STRIP defense to a poisoned VGG19 model
trained on CIFAR10 and GTSRB with various poisoning rates. Our method causes no sig-
nificant distributional shift in the prediction vector’s entropy therefore is not detectable by
STRIP.

Figures 18, 19, and 20 show the results of Activation Clustering defense method applied
to various models with different poisoning rates, namely, ResNet18 (1.0% poisoning rate),
ResNet34 (0.4% poisoning rate), and ResNet50 (0.4% poisoning rate) respectively. Visually,
AC fails to find two distinct and separable clusters and therefore fails to detect the backdoor
attack. Numerically, in terms of silhouette scores, Tables 16, 17, and 18 show that no score
is significantly higher than the other scores for the three considered models.

Figures 21, 22, and 23 show the results for Spectral Signatures defense method applied
to various models with different poisoning rates, namely, DenseNet121 (0.4% poisoning
rate), ResNet34 (0.4% poisoning rate) and ResNet50 (0.4% poisoning rate) respectively.
Visually, the method fails to find spectrally separable clusters and therefore the backdoor is
not detected. Numerically, the true positive rates (6%, 45%, and 33%) are lower than the
threshold (90%) [46] required for the defense to be deemed successful.
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Figure 14: Grad-CAM on GTSRB. The proposed Frequency-based backdoor attack allows
the network to focus on similar regions when classifying poisoned images as compared to
clean network operating on the clean version of the images. Methods that focus on Grad-
CAM based image-reconstruction fail to remove the poison.

Figure 15: Grad-CAM on ImageNet. The proposed Frequency-based backdoor attack al-
lows the network to focus on similar regions when classifying poisoned images as compared
to clean network operating on the clean version of the images. Methods that focus on Grad-
CAM based image-reconstruction fail to remove the poison.
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Figure 16: Pruning ResNet18 Trained on ImageNet. Frequency-based backdoors are suc-
cessfully maintained across high pruning rates that significantly drop the clean data accuracy.
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Figure 17: STRIP On Various Datasets. The proposed frequency backdoor attack is not
detectable by STRIP defense mechanism. Rows 1 and 2 show the results for VGG19 trained
on CIFAR10 and GTSRB, respectively, with poisoning rates of 0.4%, 1.0% and 3.0% (left
to right).

Figure 18: Activation Clustering on ResNet18 (1.0% Poisoning Rate). Activation clus-
tering fails to find two distant clusters in both cases of 2 and 3 principal components. Under
the assumption that less than 50% of the data is poisoned, we generally consider the smaller
cluster as poisonous (in our case no cluster smaller than the other exists for the poisoned
class).
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Label 0 1 2 3 4 5 6 7 8 9
Silhouette Score 0.322 0.343 0.319 0.318 0.321 0.328 0.321 0.363 0.337 0.326

Table 16: Activation Clustering on ResNet18 (1.0% Poisoning Rate - 2 PCA Compo-
nents). Silhouette scores indicate how well the clustering fits the data. The higher the score
the better the clusters fit the data. AC’s silhouette scores on our method are similar hence it
fails to detect the backdoor.

Figure 19: Activation Clustering on ResNet34 (0.4% Poisoning Rate). Activation clus-
tering fails to find two distant clusters in both cases of 2 and 3 principal components. Under
the assumption that less than 50% of the data is poisoned, we generally consider the smaller
cluster as poisonous (in our case no cluster smaller than the other exists for the poisoned
class).

Label 0 1 2 3 4 5 6 7 8 9
Silhouette Score 0.321 0.357 0.321 0.319 0.325 0.313 0.311 0.324 0.346 0.347

Table 17: Activation Clustering on ResNet34 (0.4% Poisoning Rate - 2 PCA Compo-
nents). Silhouette scores indicate how well the clustering fits the data. The higher the score
the better the clusters fit the data. AC’s silhouette scores on our method are similar hence it
fails to detect the backdoor.
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Figure 20: Activation Clustering on ResNet50 (0.4% Poisoning Rate). Activation clus-
tering fails to find two distant clusters in both cases of 2 and 3 principal components. Under
the assumption that less than 50% of the data is poisoned, we generally consider the smaller
cluster as poisonous (in our case no cluster smaller than the other exists for the poisoned
class).

Label 0 1 2 3 4 5 6 7 8 9
Silhouette Score 0.307 0.343 0.320 0.309 0.311 0.314 0.313 0.329 0.329 0.325

Table 18: Activation Clustering on ResNet50 (0.4% Poisoning Rate - 2 PCA Compo-
nents). Silhouette scores indicate how well the clustering fits the data. The higher the score
the better the clusters fit the data. AC’s silhouette scores on our method are similar hence it
fails to detect the backdoor.
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Figure 21: Spectral Signatures Defense on DenseNet121 (0.4% Poisoning Rate). Spectral
Signatures (SS) backdoor defense method fails to find two separate clusters for clean and
backdoored samples. The true positive (TP) and false positive (FP) detection rates are 6%
and 7.3% respectively and hence SS fails to detect our method.

Figure 22: Spectral Signatures Defense on ResNet34 (0.4% Poisoning Rate). Spectral
Signatures (SS) backdoor defense method fails to find two separate clusters for clean and
backdoored samples. The true positive (TP) and false positive (FP) detection rates are 45%
and 6.3% respectively and hence SS fails to detect our method.
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Figure 23: Spectral Signatures Defense on ResNet50 (0.4% Poisoning Rate). Spectral
Signatures (SS) backdoor defense method fails to find two separate clusters for clean and
backdoored samples. The true positive (TP) and false positive (FP) detection rates are 33%
and 7.2% respectively and hence SS fails to detect our method.
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L Evaluation of Proposed Defenses on Other Frequency
Attacks

Table 19 shows the clean data accuracy and the attack success rate of models poisoned by
our method, FIBA and FTrojan. The defense shows promising results against two of three
frequency backdoor attacks.

No Defense JPEG Compression Autoencoder

FIBA CDA(%) 92.51 83.80 82.33
ASR(%) 96.54 92.85 71.43

FTrojan CDA(%) 92.84 85.05 0.00
ASR 100.00 82.05 0.00

Ours CDA(%) 94.38 86.91 0.00
ASR(%) 99.44 83.15 0.00

Table 19: Proposed Frequency Backdoor Defenses: The proposed backdoor defenses,
JPEG compression and autoencoder, could break FTrojan and the proposed method. FIBA
poisons low-frequency content that is usually not removed through either compression tech-
niques. The results are reported for CIFAR10 - ResNet18 model.

M Comparing Backdoor Attacks
Table 20 compares the proposed method with other spatial backdoor attacks. As observed,
our method surpasses the performance of spatial backdoor attacks in clean data accuracy,
attack success rate, and invisibility metrics (PSNR and LPIPS). Least Significant Bit (LSB)
attack is not included in the comparison as it fails to achieve a high attack success rate and
hence fails to create a backdoor attack in the first place.

Metric Ratio BadNets Blend SIG Refool SPM LSB Poison Ink Ours

CDA/ASR
3% 87.38 / 66.55 89.89 / 89.39 89.74 / 99.23 89.20 / 87.16 88.89 / 58.53 88.18 / 10.91 89.65 / 94.22 92.31 / 99.43
5% 87.13 / 65.36 89.60 / 90.99 89.64 / 99.47 89.16 / 89.79 88.90 / 57.69 86.98 / 11.67 89.69 / 93.58 91.88 / 99.88

10% 85.61 / 68.01 89.77 / 93.11 89.45 / 99.40 88.80 / 92.80 89.07 / 57.33 83.69 / 15.76 89.47 / 93.67 92.10 / 99.97
PSNR↑/LPIPS↓ 25.68 / 0.0009 21.29 / 0.0240 25.12 / 0.0400 19.38 / 0.0397 38.94 / 0.0001 51.13 / 0.00001 42.95 / 0.0001 43.15 / 0.00001

Table 20: Comparison between the Proposed Attack and Backdoor Attacks in the Lit-
erature. Our proposed frequency-based technique provides the best trade off as compared
to spatial attacks. It achieves SOTA ASR, CDA, PSNR, and LPIPS metrics. The results
shown are for VGG19 trained on CIFAR10. The LSB method is dropped as it fails to create
a backdoor with good ASR.

N Learning Capacity vs Poisoning Capabilities
Based on our experiments (check Table 6), a particularly interesting yet expected trend is
noticed. Networks like VGG19, which lack any skip connections, tend to be harder to back-
door attack. This is because the poison information dilutes as we move deeper and deeper
in the network architecture. Low norm invisible attacks tend to be particularly influenced
by this, and hence, non-residual networks require a higher poisoning rate for embedding a
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backdoor. On the other hand, networks like ResNets, WideResNets, and DenseNets seem to
be capable of maintaining the poison information through their skip connections and hence
can be backdoored with a fairly small amount of poisoned data.


