

Motivation

Current backdoor attacks are limited to either the spatial domain or the latent space domain.

- Since existing defenses are based on that prior, we suspect that those defenses would fail in the frequency domain.
- Frequency based attacks have been proven to be successful for inference time adversarial attacks, so it would be worth a shot to see if they are also successful against backdoor attacks!

Contributions

- We propose a backdoor attack that utilizes Fourier heatmaps to design a sophisticated backdoor poisoning attack in the frequency domain.
- Unlike previous spatial attacks, our frequency-based attack is completely imperceptible and bypasses spatial defenses.
- We also show two potential ways to defend against frequencybased backdoor attacks and possible ways for the attacker to bypass these defenses.

Check Your Other Door! Creating Backdoor Attacks in the Frequency Domain

Hasan Abed Al Kader Hammoud, Bernard Ghanem

King Abdullah University of Science and Technology (KAUST)

<u>III.</u>

Metric	Ratio	SIG	Refool	SPM	WaNet	FIBA	FTrojan	Poison Ink	Ours
CDA/ASR	3%	89.74 / 99.23	89.20 / 87.16	88.89 / 58.53	<u>91.86</u> / 32.86	90.92 / 90.10	91.31 / 99.99	89.65 / 94.22	92.31 / <u>99.43</u>
	5%	89.64 / 99.47	89.16 / 89.79	88.90 / 57.69	91.47 / 88.15	90.69 / 95.06	<u>91.64 / 99.10</u>	89.69 / 93.58	91.88 / 99.88
	10%	89.45 / 99.40	88.80 / 92.80	89.07 / 57.33	<u>91.22</u> / 96.96	90.41 / 95.86	90.93 / 100.00	89.47 / 93.67	92.10 / <u>99.97</u>
PSNR↑/LPIPS ↓		25.12 / 0.0400	19.38 / 0.0397	38.94 / <u>0.0001</u>	31.53 / 0.0047	19.40 / 0.0180	41.01 / <u>0.0001</u>	<u>42.95</u> / <u>0.0001</u>	43.15 / 0.00001

Comparison between the Proposed Attack and Backdoor Attacks in the Literature. Our frequency-based attack achieves SOTA ASR, CDA, PSNR, and LPIPS metrics. The results shown are for VGG19 trained on CIFAR10. Legend: First Best, Second Best

	Poisoning Rate	CDA(%)	ASR(%)
CIFAR10	0.0%	93.92	-
	0.1%	94.00	1.54
	0.2%	94.14	72.31
	0.4%	94.20	85.05
	1.0%	94.38	99.44
	3.0%	94.31	99.79
100	0.0%	75.95	-
	0.1%	75.76	60.57
AR	0.2%	75.75	92.78
II	0.4%	75.92	96.49
0	1.0%	76.05	98.99
	3.0%	75.36	99.93
	0.0%	97.11	-
ß	0.1%	97.09	71.12
S	0.2%	97.19	89.59
5	0.4%	97.33	98.04
	1.0%	97.25	98.62
	3.0%	97.47	99.80
	0.0%	67.51	-
let	0.5%	67.38	0.17
gel	1.0%	67.13	87.74
Imag	2.0%	67.26	98.01
	3.0%	67.26	98.32

Evaluation of the prov	oosed back	door attac	k. We		Poisoning Rate	1%	2%		
benchmark using ResN	et18 trained	l on variou	s datasets	Random (1)		67.24/53.9	01 66.83/60.49		
and poisoning rates Ou	ir attack ma	intains CD	A while	Random (2)		67.23/56.8	8 66.80/66.11		
and poisoning rates. Our attack maintains CDA, while achieving high ASP even with small poisoning rates				Bottom- <i>k</i> (1)	CDA(%)/ASR(%)	67.03/22.5	66.80/55.96		
		in poisoinn	g raics.	Bottom- <i>k</i> (2)		67.04/0.3	1 67.02/92.81		
Method	PSNR ↑	SSIM ↑	LPIPS	Top- <i>k</i> (1)		67.13/87.7	4 67.26/98.01		
BadNets [16]	27.03	0.9921	0.0149	Effect of Differ	ent Frequency Selec	tion Schem	es: Results for		
Blend [5]	19.18	0.7291	0.2097	frequency filters generated using least sensitive, most sensitive and random frequencies. Choosing the top-k most sensitive frequencies provides the highest ASR among those options.					
SIG [1]	25.12	0.8988	0.0532						
Refool [35]	16.59	0.7701	0.2461						
SPM [30]	38.65	0.9665	0.0022						
Poison Ink [56]	41.62	0.9915	0.0020	100					
FTrojan [48]	44.87	0.9942	0.0005	100	$\overline{}$		Defending with		
FIBA [11]	18.05	0.8077	0.1113	S 80			JPEG Augmentatio		
Ours (ResNet18)	47.26	0.9998	0.0006	A/P			Training on JPEG		
Ours (ResNet34)	47.55	0.9998	0.0004	G 60 -			compressed images		
Ours (ResNet50)	46.90	0.9998	0.0009	ge	Base	line	maintains a high ASI		
Ours (DenseNet121)	47.21	0.9998	0.0001	et 40 -	Defe	nded ASR	10% in CDA The		
Ours (VGG19)	46.19	0.9998	0.0008		Unde	efended ASR	baseline denotes the		
Comparing Invisibility Metrics of Backdoor Attacks on ImageNet. Our attack achieves the best					60 40	20 0	CDA of the baseline model evaluated on compressed images.		
invisibility scores compared to other existing methods.				JPEG Compression Quality (%)					

King Abdullah University o Science and Technolog

Results

Evaluation of defenses: Evaluation of various SOTA defenses against the proposed frequency-based attack shows the power of the proposed method in evading the defenses. (a) Grad-CAM shows high similarity in the attention regions for poisoned and nonpoisoned models; (b) **Pruning** the poisoned model maintains high ASR even after significant drop in CDA. (c) Neural **Cleanse** anomaly indices fall below the anomaly threshold (2.0).

Heatmaps of Various Frequency Selection: Fourier heatmaps of frequency based backdoor attacks with different frequency selection schemes: (a) Clean Model; (b) Random Frequency Selection; (c) Bottom-k Frequency Selection; (d) Proposed Top-k Frequency Selection