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Figure 1: Universal-scale object detection. For realizing human-level perception, object de-
tection systems must detect both tiny and large objects, even if they are out of natural image
domains. To this end, we introduce the Universal-Scale object detection Benchmark (USB)
that consists of the COCO dataset (left), Waymo Open Dataset (middle), and Mangal09-s
dataset (right).

Abstract

Benchmarks, such as COCO, play a crucial role in object detection. However, exist-
ing benchmarks are insufficient in scale variation, and their protocols are inadequate for
fair comparison. In this paper, we introduce the Universal-Scale object detection Bench-
mark (USB). USB has variations in object scales and image domains by incorporating
COCO with the recently proposed Waymo Open Dataset and Mangal09-s dataset. To
enable fair comparison and inclusive research, we propose training and evaluation proto-
cols. They have multiple divisions for training epochs and evaluation image resolutions,
like weight classes in sports, and compatibility across training protocols, like the back-
ward compatibility of the Universal Serial Bus. Specifically, we request participants to
report results with not only higher protocols (longer training) but also lower protocols
(shorter training). Using the proposed benchmark and protocols, we conducted extensive
experiments using 15 methods and found weaknesses of existing COCO-biased methods.
The code is available at https://github.com/shinya7y/UniverseNet.

1 Introduction

Humans can detect various objects. See Figure 1. One can detect close equipment in every-
day scenes, far vehicles in traffic scenes, and texts and persons in manga (Japanese comics).
If computers can automatically detect various objects, they will yield significant benefits
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to humans. For example, they will help impaired people and the elderly, save lives by au-
tonomous driving, and provide safe entertainment during pandemics by automatic transla-
tion.

Researchers have pushed the limits of object detection systems by establishing datasets
and benchmarks [36]. One of the most important milestones is PASCAL VOC [15]. It has
enabled considerable research on object detection, leading to the success of deep learning-
based methods and successor datasets such as ImageNet [49] and COCO [33]. Currently,
COCO serves as the standard dataset and benchmark for object detection because it has
several advantages over PASCAL VOC [15]. COCO contains more images, categories, and
objects (especially small objects) in their natural context [33]. Using COCO, researchers can
develop and evaluate methods for multi-scale object detection. However, the current object
detection benchmarks, especially COCO, have the following two problems.

Problem 1: Variations in object scales and image domains remain limited. To realize
human-level perception, computers must handle various object scales and image domains as
humans can. Among various domains [61], the traffic and artificial domains have extensive
scale variations (see Sec. 3.3). COCO is far from covering them. Nevertheless, the current
computer vision community is overconfident in COCO results. For example, most studies on
state-of-the-art methods in 2020 only report COCO results [9, 10, 29, 31, 60, 64] or those for
bounding box object detection [4, 14, 46, 57]. Readers cannot assess whether these methods
are specialized for COCO or generalizable to other datasets and domains.

Problem 2: Protocols for training and evaluation are not well established. There
are standard experimental settings for the COCO benchmark [8, 20, 31, 34, 35, 59, 64].
Many studies train detectors within 24 epochs using a learning rate of 0.01 or 0.02 and
evaluate them on images within 1333x800. These settings are not obligations but non-
binding agreements for fair comparison. Some studies do not follow the settings for accurate
and fast detectors'. Their abnormal and scattered settings hinder the assessment of the most
suitable method. Furthermore, by “buying stronger results” [50], they build a barrier for
those without considerable funds to develop and train detectors.

This study makes the following two contributions to resolve the problems.

Contribution 1: We introduce the Universal-Scale object detection Benchmark (USB)
that consists of three datasets. In addition to COCO, we selected the Waymo Open Dataset [54]
and Mangal09-s [3, 41] to cover various object scales and image domains. They are the
largest public datasets in their domains and enable reliable comparisons. To the best of our
knowledge, USB is the first benchmark beyond COCO that evaluates finer scale-wise metrics
across multiple domains. We conducted extensive experiments using 15 methods and found
weaknesses of existing COCO-biased methods.

Contribution 2: We established the USB protocols for fair training and evaluation, in-
spired by weight classes in sports and the backward compatibility of the Universal Serial
Bus. Specifically, USB protocols enable fair and easy comparisons by defining multiple
divisions for training epochs and evaluation image resolutions. Furthermore, we introduce
compatibility across training protocols by requesting participants to report results with not
only higher protocols (longer training) but also lower protocols (shorter training). To the
best of our knowledge, our training protocols are the first ones that allow for both fair com-
parisons with shorter training and strong results with longer training. Our protocols promote
inclusive, healthy, and sustainable object detection research.

1YOLOV4 was trained for 273 epochs [4], DETR for 500 epochs [7], EfficientDet-D6 for 300 epochs [57], and
EfficientDet-D7x for 600 epochs [58]. SpineNet uses a learning rate of 0.28 [14], and YOLOv4 uses a searched
learning rate of 0.00261 [4]. EfficientDet finely changes the image resolution from 512x512 to 1536x1536 [57].
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2 Related Work

Multi-scale object detection. Detecting multi-scale objects is a fundamental challenge in
object detection [5, 36]. Various components have been improved, including backbones
and modules [11, 16, 22, 24, 56], necks [12, 34, 57, 60], heads and training sample selec-
tion [37, 47, 64], and multi-scale training and testing [48, 53, 64] (see Supp. B for details).
Unlike most prior studies, we analyzed their methods across various object scales and image
domains through the proposed benchmark.

Single-domain benchmarks. There are numerous object detection benchmarks that spe-
cialize in a specific domain or consider natural images as a single generic domain. For
specific (category) object detection, recent benchmarks such as WIDER FACE [62] and
TinyPerson [63] contain tiny objects. For autonomous driving, KITTI [18] and Waymo
Open Dataset [54] mainly evaluate three categories (car, pedestrian, and cyclist) in their
leaderboards. For generic object detection, PASCAL VOC [15] and COCO [33] include
20 and 80 categories, respectively. The number of categories has been further expanded
by recent benchmarks, such as Open Images [30], Objects365 [51], and LVIS [21]. The
above datasets comprise photographs, whereas Clipartlk, Watercolor2k, Comic2k [27], and
Mangal09-s [3, 41] comprise artificial images. Although Waymo Open Dataset [54] and
Mangal09-s [3, 41] have extensive scale variations (see Sec. 3.3), scale-wise metrics have
not been evaluated [43, 54]. Unlike the above benchmarks, our USB consists of multiple
domains and contains many instances in both photographs and artificial images, and we can
evaluate the generalization ability of methods.

Cross-domain benchmarks. To avoid performance drops in target domains without labor-
intensive annotations, many studies have tackled domain adaptation of object detection [44].
Some datasets have been proposed for this setting [27, 28]. Typically, there is a strong
constraint to share a label space. Otherwise, special techniques are needed for training,
architectures, unified label spaces [65, 66], and partial or open-set domain adaptation [44].
In contrast, we focus on fully supervised object detection, which allows us to analyze many
standard detectors.

Multi/universal-domain benchmarks. Even if target datasets have annotations for training,
detectors trained and evaluated on a specific dataset may perform worse on other datasets or
domains. To address this issue, some benchmarks consist of multiple datasets. In the Ro-
bust Vision Challenge (RVC) 2020 [1], detectors were evaluated on three datasets in the
natural and traffic image domains. A few studies have explored the two domains by en-
riching RVC [66] or making a unique combination [65], although they focus on methods
for unified detectors. For universal-domain object detection, the Universal Object Detection
Benchmark (UODB) [61] comprises 11 datasets in the natural, traffic, aerial, medical, and
artificial image domains. Although it is suitable for evaluating detectors in various domains,
variations in object scales are limited. Unlike UODB, our USB focuses on universal-scale
object detection. The datasets in USB contain more instances, including tiny objects, than
the datasets used in UODB.

Criticism of experimental settings. For fair, inclusive, and efficient research, many studies
have criticized experimental settings (e.g., [42, 50]). These previous studies do not propose
fair and practical protocols for object detection benchmarks. As discussed in Sec. 1, the
current object detection benchmarks allow extremely unfair settings (e.g., 25x epochs). We
resolved this problem by establishing protocols for fair training and evaluation.
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Benchmark Dataset Boxes  Images B/I Scale variation
COCO [33] 897k 3.1x) 123k 7.3  88.8(1.0x)

USB (Ours) WOD [54] v1.2 £0 1.0M (29%x) 100k 10.0 96.7 (5.8x)
Mangal09-s [3, 41] 401k (63x) 82k 49.2 28.6 (1.5x)

1

i —— Coco
i/

|

Cumulative distribution

02 —— wop COCO [33]val2014 292k 41k 72 89.6
00 Mengal0®s  UODB [61] KITTI[18] 35k 75k 4.7 16.6
%0 02 04 06 08 10 Comic2k [27] 6.4k 20k 32 19.1

Relative scale

Figure 2: Distributions of Table 1: Statistics of datasets in USB and counterpart datasets
objects’ relative scale [26, in UODB [61]. Values are based on publicly available annota-
53]. USB covers diverse tions. B/I: Average number of boxes per image. 1: Calculated
scale variations. by the ratio of the 99 percentile to 1 percentile of relative scale.

3 Benchmark Protocols of USB

Here, we present the principle, datasets, protocols, and metrics of USB. See Supp. C for
additional information.

3.1 Principle

We focus on the Universal-Scale Object Detection (USOD) task that aims to detect various
objects in terms of object scales and image domains. Unlike separate discussions for multi-
scale object detection (Sec. 2) and universal (-domain) object detection [61], USOD does not
ignore the relation between scales and domains (Sec. 3.3).

For various applications and users, benchmark protocols should cover from short to long
training and from small to large test scales. On the other hand, they should not be scattered
for meaningful benchmarks. To satisfy the conflicting requirements, we define multiple
divisions for training epochs and evaluation image resolutions. Furthermore, we urge partic-
ipants who have access to extensive computational resources to report results with standard
training settings. This request enables fair comparison and allows many people to develop
and compare object detectors.

3.2 Definitions of Object Scales

Following [63], we consider two types of object scales. The absolute scale is calculated as
v/wh, where w and h denote the object’s width and height, respectively. The relative scale is

wh

calculated as Wi

where W and H denote the image’s width and height, respectively.

3.3 Datasets

To establish USB, we selected the COCO [33], Waymo Open Dataset (WOD) [54], and
Mangal09-s (M109s) [3, 41]. WOD and M109s are the largest public datasets with many
small objects in the traffic and artificial domains, respectively. Object scales in these do-
mains vary significantly with distance and viewpoints, unlike those in the medical and aerial
domains®>. USB covers diverse scale variations qualitatively (Figure 1) and quantitatively
(Figure 2). As shown in Table 1, these datasets contain more instances and larger scale vari-
ations [53] than their counterpart datasets in UODB [61]. USOD needs to evaluate detectors

2 Aerial datasets contain abundant small objects but scarce large ones (see Table 4 in [13]). WOD has larger
scale variation by distance variation, where 1% of objects are larger than 1/4 of the image area.
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Protocol Fai Suitable for Strong Selectable ~Comparable
rotoco 4T each model results divisions across divisions

A) Standard (short) training v

B) Lawless (no regulations) v v
C) Ours w/o compatibility v v v v
D) Ours v v v v v

Table 2: Comparison of training protocols.

on datasets with many instances because more instances enable more reliable comparisons
of scale-wise metrics.

For the first dataset, we adopted the COCO dataset [33]. COCO contains natural images
of everyday scenes collected from the Internet. Annotations for 80 categories are used in
the benchmark. As shown in Figure 1 (left), object scales mainly depend on categories and
distance. Although COCO contains objects smaller than those of PASCAL VOC [15], ob-
jects in everyday scenes (especially indoor scenes) are relatively large. Since COCO is the
current standard dataset for multi-scale object detection, we adopted the same training split
train2017 as the COCO benchmark to eliminate the need for retraining across bench-
marks. We adopted the va12017 split (also known as minival) as the test set.

For the second dataset, we adopted the WOD, which is a large-scale, diverse dataset for
autonomous driving [54] with many annotations for tiny objects (Figure 2). The images were
recorded using five high-resolution cameras mounted on vehicles. As shown in Figure 1
(middle), object scales vary mainly with distance. The full data splits of WOD are too
large for benchmarking methods. Thus, we extracted 10% size subsets from the predefined
training split (798 sequences) and validation split (202 sequences) [54]. Specifically, we
extracted splits based on the ones place of the frame index (frames 0, 10, ..., 190) in each
sequence. We call the subsets £0train and £0val splits. Each sequence in the splits
contains ~20 frames (20s, 1 Hz), and each frame contains five images for five cameras.
We used three categories (vehicle, pedestrian, and cyclist) following the official ALL_NS
setting [2] used in WOD competitions.

For the third dataset, we adopted the M109s [3, 41]. M109s contains artificial images of
manga (Japanese comics) and annotations for four categories (body, face, frame, and text).
Many characteristics differ from those of natural images. Most images are grayscale. The
objects are highly overlapped [43]. As shown in Figure 1 (right), object scales vary unre-
strictedly with viewpoints and page layouts. Small objects differ greatly from downsampled
versions of large objects because small objects are drawn with simple lines and points. For
example, small faces look like a sign (*."). This characteristic may ruin techniques developed
mainly for natural images. We carefully selected 68, 4, and 15 volumes for training, valida-
tion, and testing splits, and we call them the 68train, 4val, and 15test, respectively.

3.4 Motivation of Training Protocols

We describe the motivation of our training protocols with Table 2, which compares exist-
ing protocols (A and B) and novel protocols (C and D). Protocol A is the current standard
training protocol within 24 epochs, popularized by successive detectors, Detectron [20],
and MMDetection [8]. This protocol is fair but not suitable for slowly convergent mod-
els (e.g., DETR [7]). Protocol B is lawless without any regulations. Participants can train
their models with arbitrary settings suitable for them, even if they are unfair settings (e.g.,
standard training for existing methods and longer training for proposed ones). Since object
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Protocol Max epoch AHPO Compatibility Example

Protocol Max reso. Typical scale Reference

USB 1.0 4 X — 2x schedule [20, 23] “grindard USB 1,066,667 1333x 800 Popular in COCO [8, 20, 33]
USB 2.0 73 X USBLO 6x schedule [23] Mini USB 262,144 512 512 Popular in VOC [15, 37]
USB 3.0 300 X USB1.0,20  EfficientDet-D6 [S7]  pficro USB 50,176 224x 224 Popular in ImageNet [22, 49]
USB3.1 300 v USB1.0,2.0,3.0 YOLOV4 [4] Large USB 2,457,600 19201280 WOD front cameras [54]
Freestyle > v = EfficientDet-D7x [S8]  Huge USB 7,526,400 3360x2240 WOD methods ([26], ours)

.. Freestyl oo — —
Table 3: USB training protocols. AHPO: ===

Aggressive hyperparameter optimization. Table 4: USB evaluation protocols.

detectors can achieve high accuracy with long training schedules and strong data augmenta-
tion [14, 19, 58], participants can buy stronger results [50].

Since both existing protocols A and B have advantages and disadvantages, we considered
novel protocols to bridge them. We first defined multiple divisions for training epochs, in-
spired by weight classes in sports. This Protocol C enables fair comparison in each division.
Participants can select divisions according to their purposes and resources. However, we can-
not compare models across divisions. To resolve this, we propose Protocol D by introducing
backward compatibility like the Universal Serial Bus. As described above, our protocols
introduce a completely different paradigm from existing limited or unfair protocols.

The training protocols mainly target resource-intensive factors that can increase the re-
quired resources 10 times or more. This decision improves fairness without obstructing novel
methods and practical settings that researchers can adopt without many resources. We do not
adopt factors that have large overlaps with inference efficiency, which has been considered
in many previous studies.

3.5 Training Protocols

For fair training, we propose the USB training protocols shown in Table 3. By analogy with
the backward compatibility of the Universal Serial Bus®, USB training protocols emphasize
compatibility between protocols. Importantly, participants should report results with not
only higher protocols but also lower protocols. For example, when a participant trains a
model for 150 epochs with standard hyperparameters, it corresponds to USB 3.0. The par-
ticipant should also report the results of models trained for 24 and 73 epochs in a paper. This
reveals the effectiveness of the method by ablating the effect of long training. The readers
of the paper can judge whether the method is useful for standard epochs. Since many people
do not have access to extensive computational resources, such information is important.

The number of maximum epochs for USB 1.0 is 24, following a popular setting in
COCO [8, 20]. We adopted 73 epochs for USB 2.0, where models trained from scratch can
catch up with those trained from ImageNet pre-trained models [23]. This serves as a guide-
line for comparison between models with and without pre-training, although perfectly fair
comparisons are impossible considering the large differences caused by pre-training [52].
We adopted 300 epochs for USB 3.x such that YOLOv4 [4] and most EfficientDet mod-
els [58] correspond to this protocol. Models trained for more than 300 epochs are regarded
as Freestyle. They are not suitable for benchmarking methods, although they may push the
empirical limits of detectors [7, 58]. The correspondences between Tables 2 and 3 are as
follows: Protocol A corresponds to only USB 1.0; Protocol B corresponds to only Freestyle;
Protocol C corresponds to all protocols (divisions) in Table 3 without compatibility; and
Protocol D corresponds to all protocols (divisions) in Table 3 with compatibility.

3 Higher protocols can adapt the data transfer rate to lower protocols.
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In addition to long training schedules, hyperparameter optimization is resource-intensive.
If authors of a paper fine-tune hyperparameters for their architecture, other people without
sufficient computational resources cannot compare methods fairly. For hyperparameters that
need to be tuned exponentially, such as learning rates and 1 — m where m denotes momen-
tum, the minimum ratio of hyperparameter choices should be greater than or equal to 2 (e.g.,
choices {0.1,0.2,0.4,0.8,...}, {0.1,0.2,0.5,1.0,...}, and {0.1,0.3,1.0,...}). For hyperpa-
rameters that need to be tuned linearly, the number of choices should be less than or equal
to 11 (e.g., choices {0.0,0.1,0.2,...,1.0}). When participants perform aggressive hyperpa-
rameter optimization (AHPO) by manual fine-tuning or automatic algorithms, 0.1 is added
to their number of protocols. They should report both results with and without AHPO. To
further improve fairness without sacrificing the protocols’ simplicity, we consider it a kind
of AHPO to use data augmentation techniques that more than double the time per epoch.

For models trained with annotations other than 2D bounding boxes (e.g., segmentation,
keypoint, caption, and point cloud), 0.5 is added to their number of protocols. Participants
should also report results without such annotations if possible for their algorithms.

For ease of comparison, we limit the pre-training datasets to the three datasets and
ImageNet-1k (ILSVRC 1,000-class classification) [49]. Other datasets are welcome only
when the results with and without additional datasets are reported. Participants should de-
scribe how to use the datasets (e.g., fine-tuning models on WOD and M109s from COCO
pre-trained models, or training a single model jointly [61, 66] on the three datasets).

3.6 Evaluation Protocols

For fair evaluation, we propose the USB evaluation protocols shown in Table 4. By analogy
with the size variations of the Universal Serial Bus connectors for various devices, USB
evaluation protocols have variations in test image scales for various devices and applications.

The maximum resolution for Standard USB follows the popular test scale of 1333 x800
in the COCO benchmark [8, 20]. For Mini USB, we limit the resolution based on 512x512.
This resolution is popular in the PASCAL VOC benchmark [15, 37], which contains small
images and large objects. It is also popular in real-time detectors [4, 57]. We adopted a
further small-scale 224 x224 for Micro USB. This resolution is popular in ImageNet clas-
sification [22, 49]. Although small object detection is extremely difficult, it is suitable for
low-power devices. Additionally, this protocol enables people to manage object detection
tasks using one or few GPUs. To cover larger test scales than Standard USB, we define
Large USB and Huge USB based on WOD resolutions (see Supp. E for the top methods).
Although larger inputs (regarded as Freestyle) may be preferable for accuracy, excessively
large inputs reduce the practicality of detectors.

In addition to test image scales, the presence and degree of Test-Time Augmentation
(TTA) make large differences in accuracy and inference time. When using TTA, participants
should report its details (including scales of multi-scale testing) and results without TTA.

3.7 Evaluation Metrics

We mainly use the COCO metrics [32, 33] to evaluate the performance of detectors on
each dataset. We provide data format converters for WOD* and M109s”. The COCO-

“https://github.com/shinya7y/WaymoCOCO
Shttps://github.com/shinya7y/mangal09api
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style AP (CAP) for a dataset d is calculated as CAP,; = ﬁZ,GT |C71d\):C€C AP ¢, where
T =1{0.5,0.55,...,0.95} denotes the predefined 10 IoU thresholds, C; denotes categories in
the dataset d, and AP; . denotes Average Precision (AP) for an IoU threshold ¢ and a category
c. For detailed analysis, five additional AP metrics (averaged over categories) are evaluated.
APsy and AP75 denote AP at single IoU thresholds of 0.5 and 0.75, respectively. APg, APy,
and AP, are variants of CAP, where target objects are limited to small (area < 322), medium
(32% < area < 96%), and large (96> < area) objects, respectively. The area is measured using
mask annotations for COCO and bounding box annotations for WOD and M109s.

As the primary metric for USB, we use the mean COCO-style AP (mCAP) averaged over
all datasets D as mCAP = \;ﬁl Y 4cp CAP,. Since USB adopts the three datasets described in
Sec. 3.3, mCAP = (CAPcoco + CAPwop + CAPMmi09s) /3. Similarly, we define five metrics
from APsy, AP7s, APg, APy, and APy, by averaging them over the datasets.

The three COCO-style scale-wise metrics (APg, APy, and APy ) are too coarse for de-
tailed scale-wise analysis. They confuse objects of significantly different scales. For ex-
ample, the absolute scale of a large object might be 100 or 1600. Thus, we introduce
finer scale-wise metrics. We define the Absolute Scale AP (ASAP) and Relative Scale AP
(RSAP) using exponential thresholds. ASAP partitions object scales based on absolute
scales (0,8,16,32,...,1024,0), while RSAP partitions object scales based on relative scales
(0, %6, ﬁ, e %7 1). We call the partitions by their maximum scales.

For ease of quantitative evaluation, we limit the number of detections per image to 100
across all categories [32]. For qualitative evaluation, participants may raise the limit to 300
because 1% of images in the M109s 15test set contain more than 100 annotations.

4 Experiments

Here, we present benchmark results and analysis on USB. See Supp. E for the details of the
experimental settings and results, including additional analysis and ablation studies.

4.1 Experimental Settings

We compared and analyzed 15 methods. With the ResNet-50-B [22, 24] backbone, we
compared popular baseline methods: (1) Faster R-CNN [47] with FPN [34], (2) Cascade
R-CNN [6], (3) RetinaNet [35], (4) ATSS [64], (5) GFL [31], (6) DETR [7], (7) Deformable
DETR [67], and (8) Sparse R-CNN [55]. With ATSS [64], we compared recent represen-
tative backbones and necks: (9) Swin-T [38], (10) ConvNeXt-T [39], (11) SEPC without
iBN [60], and (12) DyHead [12]. For a strong baseline, we trained (13) YOLOX-L [17],
which adopts strong data augmentation. We designed two additional detectors for USOD by
collecting methods for multi-scale object detection. (14) UniverseNet: ATSS [64] with SEPC
(without iBN) [60], Res2Net-50-v1b [16], Deformable Convolutional Networks (DCN) [11],
and multi-scale training. (15) UniverseNet-20.08: A variant of UniverseNet designed around
August 2020 with GFL [31], SyncBN [45], iBN [60], and the light use of DCN [11, 60]. See
Supp. D for the details of the methods and architectures used in UniverseNets.

Hyperparam. Common

Hyperparameters COCO WOD M109s

Learning rate for multi-stage detectors 0.02 0.02 0.16 gggﬁl size %g
Learning rate for single-stage detectors ~ 0.01 0.01 0.08 Momentum 0.9
Test scale 1333x800 1248x832 1216x864 '

Weight decay 1074

Table 5: Default hyperparameters. See Supp. E for exceptions.


Citation
Citation
{Lin, Doll{á}r, etprotect unhbox voidb@x penalty @M  {}al.} 

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{He, Zhang, Zhang, Zhang, Xie, and Li} 2019{}

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Lin, Doll{á}r, Girshick, He, Hariharan, and Belongie} 2017{}

Citation
Citation
{Cai and Vasconcelos} 2018

Citation
Citation
{Lin, Goyal, Girshick, He, and Doll{á}r} 2017{}

Citation
Citation
{Zhang, Chi, Yao, Lei, and Li} 2020

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Zhu, Su, Lu, Li, Wang, and Dai} 2021

Citation
Citation
{Sun, Zhang, Jiang, Kong, Xu, Zhan, Tomizuka, Li, Yuan, Wang, and Luo} 2021

Citation
Citation
{Zhang, Chi, Yao, Lei, and Li} 2020

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Liu, Mao, Wu, Feichtenhofer, Darrell, and Xie} 2022

Citation
Citation
{Wang, Zhang, Yu, Feng, and Zhang} 2020

Citation
Citation
{Dai, Chen, Xiao, Chen, Liu, Yuan, and Zhang} 2021

Citation
Citation
{Ge, Liu, Wang, Li, and Sun} 2021

Citation
Citation
{Zhang, Chi, Yao, Lei, and Li} 2020

Citation
Citation
{Wang, Zhang, Yu, Feng, and Zhang} 2020

Citation
Citation
{Gao, Cheng, Zhao, Zhang, Yang, and Torr} 2021

Citation
Citation
{Dai, Qi, Xiong, Li, Zhang, Hu, and Wei} 2017

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Peng, Xiao, Li, Jiang, Zhang, Jia, Yu, and Sun} 2018

Citation
Citation
{Wang, Zhang, Yu, Feng, and Zhang} 2020

Citation
Citation
{Dai, Qi, Xiong, Li, Zhang, Hu, and Wei} 2017

Citation
Citation
{Wang, Zhang, Yu, Feng, and Zhang} 2020


YOSUKE SHINYA: USB: UNIVERSAL-SCALE OBJECT DETECTION BENCHMARK 9

68
40 <" u Cascade R-CN<NG’FL
36
v “ * v ATSS
v o
Q o
39 <
g g3s 5 66 @ Faster R-CNN
o o o & A RetinaNet
838 o Q34 S 6
5] = s
L4 64| ¢ Deformable DETR
37| ¢ 3|
A A 63| @ Sparse R-CNN
44 45 46 47 48 49 44 45 46 47 48 49 44 45 46 47 48 49
mCAP mCAP mCAP

Figure 3: Correlation between mCAP and CAP on each dataset.

Method mCAP APs)AP7s AP APy AP, COCO WOD MI09s
Faster R-CNN [47] 459 68.2 49.1 152 38.9 62.5 37.4 345 658 o o oo Moty
Cascade R-CNN [6] 48.1 68.5 51.5 15.6 41.3 65.9 403 364 67.6 o |.a-Retinanet
RetinaNet [35] 448 66.0 474 12.9 373 62.6 365 325 653 < 0| -v-arss
ATSS [64] 471 680502 155395 647 394 354 665 gao| +CFL
GFL [31] 477 683 50.6 15.8 39.9 65.8 402 357 673 %
DETR [7] 237 459216 28 138 421 222 178 312 = |4 ecormevene®
Deform. DETR [67] 44.6 67.0 47.3 13.8 36.1 62.6 37.1 327 641 320
Sparse R-CNN [55]  44.6 65.4 469 14.4 358 63.0 37.9 328 63.1 10
- .
Table 6: Results of popular baseline methods. e Ths T m T s i
Relative scale
Backbone mCAP APsy APys APs APy AP, COCO WOD MI0s Fioyre 4: Relative Scale AP of popular
ResNet-50-B [24]  47.1 68.0 50.2 155 39.5 647 394 354 665 .
Swin-T [38] 49.0 70,6 52.0 172 418 672 437 372 662 baseline methods.
ConvNeXt-T[39]  50.4 71.8 53.7 17.3 43.0 69.0 455 383 674
Table 7: ATSS [64] with different backbones. 70[ - Universenet-20.08 /\
YOLOX
Neck mCAP APsy AP;s APs APy AP, COCO WOD M109s % :3
FPN [34] 471 680502 155 395 647 394 354 665 3.
FPNSEPC[60]  48.1 68.5 51.2 15.5 405 66.8 42.1 350 67.1 9
FPN+DyHead [12] 494 69.8 529 16.8 43.0 67.8 433 371 619 =2 ,
- - T 20
Table 8: ATSS [64] with different necks. < o //
Method mCAP APs AP75 APs APy AP, COCO WOD M109s 00 156 128 ves 132 1le  Us 14 12 1
YOLOX-L [17] 51.0 72.6 54.7 21.2 45.9 65.0 41.1 41.6 702 . , Relative scale
UniverseNet 51.4 721 55.1 18.4 450 707 46.7 386 68.9 Flgure 5: Relative Scale AP of strong

UniverseNet-20.08  52.1 729 55.5 192 45.8 70.8 475 390 69.9
Table 9: Results of strong baseline methods.

baseline methods.

Our code is built on MMDetection [8]. We trained models with Stochastic Gradient De-
scent (SGD) or AdamW [40]. COCO models other than YOLOX [17] were fine-tuned from
ImageNet [49] pre-trained backbones. We trained the models for WOD and M109s from
the corresponding COCO pre-trained models (some COCO models from MMDetection [8]).
The default hyperparameters are listed in Table 5. Test scales were determined within the
Standard USB protocol, considering the typical aspect ratio of the images in each dataset.

4.2 Benchmark Results on USB

Main results. We trained and evaluated the eight popular methods on USB. All the methods
follow the Standard USB 1.0 protocol. The results are shown in Table 6. Cascade R-CNN [6]
achieves the highest results in almost all metrics. The accuracy of DETR [7] is low by a
large margin. We show the correlation between mCAP and CAP on each dataset in Figure 3.
Faster R-CNN [47] is underestimated on COCO. Although Sparse R-CNN [55] is much more
accurate than RetinaNet [35] on COCO, this is not true on the other datasets. These results
show the limitation of benchmarking with COCO only.

Backbones and necks. Tables 7 and 8 show the comparison results of the backbones and
necks, respectively. Swin-T [38] shows lower AP than ResNet-50-B [22, 24] on M109s.
SEPC [60] deteriorates WOD CAP.
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Strong baselines. Table 9 shows the results of the three strong baselines. UniverseNet-
20.08 achieves the highest mCAP of 52.1%. YOLOX-L [17] shows better results on WOD
and M109s, which contain many small objects, possibly due to better APs.

Scale-wise AP. We show RSAP on USB in Figures 4 and 5. Since the proposed metrics
partition object scales evenly-spaced exponentially, we can confirm the continuous change.
RSAP does not increase monotonically but rather decreases at relative scales greater than
1/4. We cannot find this weakness from the coarse COCO-style scale-wise AP in Table 6 efc.
The difficulty of very large objects may be caused by truncation or unusual viewpoints [25].
The results also show that different methods are good at different scales. We need further
analysis in future research to develop methods that can detect both tiny and large objects.
Details on each dataset. We show detailed results on each dataset in Supp. E. AP on WOD
is at most 12.0%, which is much lower than APs on COCO. This highlights the limitation
of COCO and current detectors. Adding SEPC [60] to ATSS [64] decreases all metrics on
WOD except for AP;. We found that this reduction does not occur at large test scales in
higher USB evaluation protocols. Improvements by ATSS [64] on M109s are smaller than
those on COCO and WOD due to the drop of face AP. We conjecture that this phenomenon
comes from the domain differences discussed in Sec. 3.3 and prior work [43].

Qualitative results. We show some qualitative results of the best detector (UniverseNet-
20.08) in Figure 1. Although most detections are accurate, it still suffers from classification
error, localization error, and missing detections of tiny vehicles and small manga faces.

5 Conclusions and Discussions

We introduced USB, a benchmark for universal-scale object detection. To resolve unfair
comparisons in existing benchmarks, we established USB training/evaluation protocols. With
the benchmark, we found weaknesses in existing methods to be addressed in future research.

There are several limitations to this work. (1) USB has imbalances in domains and cate-
gories because it depends on the existing datasets that have large scale variations. It will be
an important direction to construct a well-balanced and more comprehensive benchmark that
contains more domains and categories. (2) The architectures and results of the 15 methods
are still biased toward COCO due to development and pre-training on COCO. Less biased
and more universal detectors should be developed in future research. (3) We could not train
detectors with higher protocols than USB 1.0 due to limited resources. Although the compat-
ibility enables comparison in low protocols, still only well-funded researchers can compare
detectors in high protocols. Other efforts are also needed to ensure fairness and inclusion in
research. See Supp. A for discussion on other limitations and research ethics.

The current computer vision community places a high value on state-of-the-art results.
Thus, there is a large incentive to make unfair comparisons for overly accurate results, like
DETR [7] and EfficientDet [57]. We need to create a system that emphasizes fair compar-
isons. To improve effectiveness in broad areas, creating a checklist that can be incorporated
into author/reviewer guidelines is a promising future direction. We believe that our work is
an important step toward realizing fair and inclusive research by connecting various experi-
mental settings.

Acknowledgments. We are grateful to Dr. Hirokatsu Kataoka for helpful comments. We
thank all contributors for the datasets and software libraries. The original image of Figure 1
(left) is satellite office by Taiyo FUJII (CC BY 2.0).
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