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A Discussions on Research Ethics
Limitations. In addition to the limitations described in the main text, this work has the
following limitations. (1) USB depends on datasets with many instances. Reliable scale-wise
metrics for small datasets should be considered. (2) USB does not cover the resolution of
recent smartphone cameras (e.g., 4000×3000). Such high-resolution images may encourage
completely different methods. (3) USB, as well as UODB [61], has a large imbalance in the
number of images. If participants train a unified detector [61, 67], they will need strategies
for dataset sampling [67].
Potential negative societal impacts. Improving the accuracy and universality of object
detectors could improve the performance of autonomous weapons. To mitigate the risk, we
could develop more detectors for entertainment to increase people’s happiness and decrease
their hatred. Besides, detectors might be misused for surveillance systems (e.g., as a part of
person tracking methods). To mitigate the risk, the computer vision community will need to
have discussions with national and international organizations to regulate them appropriately.
Existing assets. We used the assets listed in Table 10. See our codes for more details. Refer
to the papers [2, 31, 48] and the URLs for how the datasets were collected.

Asset Version URL License
COCO [31] 2017 https://cocodataset.org/ Annotations: CC-BY 4.0; images: various licenses
WOD [48] 1.2 https://waymo.com/open/ Custom license
Manga109-s [2, 38] 2020.12.18 http://www.manga109.org/ Custom license
COCO API [30] 2.0 https://github.com/cocodataset/cocoapi 2-Clause BSD License
WOD (code) — https://github.com/waymo-research/waymo-open-dataset Apache License 2.0
Manga109 API 0.3.1 https://github.com/manga109/manga109api MIT License
MMDetection [9] 2.25.0 https://github.com/open-mmlab/mmdetection Apache License 2.0

Table 10: Existing assets we used.

Consent. See [2] for M109s. For the other datasets, we could not find whether and how con-
sent was obtained. It will be impossible to obtain consent from people recorded in datasets
for autonomous driving such as WOD [48].
Privacy. Faces and license plates in WOD [48] are blurred. COCO images may harm privacy
because they probably contain personally identifiable information. However, COCO [31] is
so popular that the computer vision community cannot stop using it suddenly. This paper
will be a step toward reducing the dependence on COCO.
Offensive contents. M109s covers various contents [2]. This characteristic is useful to
develop universal-scale object detectors. One of the authors checked many images of the
three datasets with eyes and felt that some images in M109s may be considered offensive
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(e.g., violence in battle manga and nudity in romantic comedy). Thus, researchers should be
careful how they use it. It is also valuable to develop methods to detect such scenes using
the dataset.
Compute. Considering the numbers of training images, training for USB takes about 1.7 (≈
118287+79735+6467

118287 ) times longer than that for COCO. This is reasonable as a next-generation
benchmark after COCO. Furthermore, the proposed protocols provide incentives to avoid
computationally intensive settings [55].

B Details of Related Work

B.1 Components for Multi-Scale Object Detection

Backbones and modules. Inception module [50] arranges 1×1, 3×3, and 5×5 convolutions
to cover multi-scale regions. Residual block [22] adds multi-scale features from shortcut
connections and 3×3 convolutions. ResNet-C and ResNet-D [23] replace the first layer of
ResNet with the deep stem (three 3×3 convolutions) [51]. Res2Net module [18] stacks 3×3
convolutions hierarchically to represent multi-scale features. Res2Net-v1b [18] adopts deep
stem with Res2Net module. Deformable convolution module in Deformable Convolutional
Networks (DCN) [13] adjusts receptive field adaptively by deforming the sampling locations
of standard convolutions. These modules are mainly used in backbones.
Necks. To combine and enhance backbones’ representation, necks follow backbones. Fea-
ture Pyramid Networks (FPN) [32] adopt top-down path and lateral connections like archi-
tectures for semantic segmentation. Scale-Equalizing Pyramid Convolution (SEPC) [60]
introduces pyramid convolution across feature maps with different resolutions and utilizes
DCN to align the features. Dynamic Head (DyHead) [14] improves SEPC with two types of
attention mechanisms.
Heads and training sample selection. Faster R-CNN [42] spreads multi-scale anchors over
a feature map. SSD [34] spreads multi-scale anchors over multiple feature maps with dif-
ferent resolutions. Adaptive Training Sample Selection (ATSS) [66] eliminates the need for
multi-scale anchors by dividing positive and negative samples according to object statistics
across pyramid levels.
Multi-scale training and testing. Traditionally, the image pyramid is an essential technique
to handle multi-scale objects [43]. Although recent detectors can output multi-scale objects
from a single-scale input, many studies use multi-scale inputs to improve performance [33,
42, 60, 66]. In a popular implementation [9], multi-scale training randomly chooses a scale
at each iteration for (training-time) data augmentation. Multi-scale testing infers multi-scale
inputs and merges their outputs for Test-Time Augmentation (TTA). Scale Normalization
for Image Pyramids (SNIP) [46] limits the range of object scales at each image scale during
training and testing.

B.2 Scale-Wise Metrics

Many studies have introduced different scale-wise metrics [6, 15, 24, 31, 44, 59, 64]. Un-
like these studies, we introduce two types of finer scale-wise metrics based on the absolute
scale and relative scale [64]. More importantly, we evaluated them on the datasets that have
extensive scale variations and many instances in multiple domains.
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Volume Genre

15test set:
Aku-Ham Four-frame cartoons
Bakuretsu! Kung Fu Girl Romantic comedy
Doll Gun Battle
Eva Lady Science fiction
Hinagiku Kenzan! Love romance
Kyokugen Cyclone Sports
Love Hina vol. 1 Romantic comedy
Momoyama Haikagura Historical drama
Tennen Senshi G Humor
Uchi no Nyan’s Diary Animal
Unbalance Tokyo Science fiction
Yamato no Hane Sports
Youma Kourin Fantasy
Yume no Kayoiji Fantasy
Yumeiro Cooking Love romance

4val set:
Healing Planet Science fiction
Love Hina vol. 14 Romantic comedy
Seijinki Vulnus Battle
That’s! Izumiko Fantasy

68train set: All the other volumes

Table 11: Manga109-s dataset splits (87 volumes in total).

C Details of Protocols

C.1 Dataset Splits of Manga109-s
The Manga109-s dataset (87 volumes) is a subset of the full Manga109 dataset (109 vol-
umes) [2]. Unlike the full Manga109 dataset, the Manga109-s dataset can be used by
commercial organizations. The dataset splits for the full Manga109 dataset used in prior
work [39] cannot be used for the Manga109-s dataset. We defined the Manga109-s dataset
splits shown in Table 11. Unlike alphabetical order splits used in the prior work [39], we se-
lected the volumes carefully. The 15test set was selected to be well-balanced for reliable
evaluation. Five volumes in the 15test set were selected from the 10 test volumes used
in [39] to enable partially direct comparison. All the authors of the 15test and 4val set
are different from those of the 68train set to evaluate generalizability.

C.2 Number of Images
There are 118,287 images in COCO train2017, 5,000 in COCO val2017, 79,735 in
WOD f0train, 20,190 in WOD f0val, 6,467 in M109s 68train, 399 in M109s 4val,
and 1,289 in M109s 15test. Following prior work [39], we exclude M109s images without
annotations because objects on irregular pages are not annotated.

We selected the test splits from images with publicly available annotations to reduce
labor for submissions. Participants should not fine-tune hyperparameters based on the test
splits to prevent overfitting.

C.3 Importance of Many Instances
Here, we highlight the importance of a larger number of instances than UODB [61]. We show
that if we introduced scale-wise metrics to UODB, the results would be unreliable. Water-
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color2k, one of the datasets adopted by UODB, has 6 classes and 27 bicycle instances [27].
If we equally divided the dataset for training and evaluation and they had the same number
of small, medium, and large bicycles, the average number of bicycles of a particular scale in
the evaluation split would be 4.5. Since the 4.5 bicycles affect 1

6 of a scale-wise metric, a
single error can change the results by 3.7%. Thus, randomness can easily reverse the ranking
between methods, making the benchmark results unreliable.

C.4 Exceptions of Protocols
The rounding error of epochs between epoch- and iteration-based training can be ignored
when calculating the maximum epochs. Small differences of eight pixels or less can be
ignored when calculating the maximum resolutions. For example, DSSD513 [17] will be
compared in Mini USB.

The number of additional images loaded for multi-image data augmentation techniques
(e.g., Between-Class Learning [58], mixup [65], RICAP [52], and Mosaic [4]) can be ignored
when calculating the maximum epochs. Even in that case, the time per epoch is considered
according to another provision in Sec. 3.5.

C.5 Constraints on Training Time
We do not adopt constraints on training time as the major constraints of the training protocols
because they have the following issues.

• It is difficult to measure training time on unified hardware.
• It is complicated to measure training time, calculate allowable epochs, and set learning

rate schedules for each model.
• It is difficult to compare with previous studies, which align the number of epochs.
• They will reduce the value of huge existing resources for standard training epochs (trained

models, configuration files, and experimental results) provided by popular object detec-
tion libraries such as MMDetection [9].

• They overemphasize implementation optimization rather than the trial and error of novel
methods.

• There are overlaps between the factors of training time and those of inference time.

The proposed constraints on training epochs are much easier to adopt and more reasonable.
Furthermore, our protocols compensate for the shortcomings of the epoch constraints by
defining the provisions for hyperparameter optimization and data augmentation.

C.6 Characteristics of Scale-Wise Metrics
ASAP and COCO-style scale-wise metrics are based on the absolute scale. It has a weakness
that it changes with image resizing. To limit inference time and GPU memory consumption,
and to ensure fair comparisons, input image scales are typically resized. If they are smaller
than the original image scales, relative scales have direct effects on accuracy rather than
absolute scales. Furthermore, objects with the same absolute scale in the original images
may have different absolute scales in the input images. Fluctuating object scale thresholds is
not desirable for scale-wise metrics.

In addition, ASAP is not suitable for evaluating accuracy for very large objects. It may
be impossible to calculate ASAP for large absolute scales on some datasets. In the case of
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Method
Head Neck Backbone Input

FPS
COCO (1× schedule)

ATSS GFL PConv DCN iBN Res2 DCN SyncBN MStrain AP AP50 AP75 APS APM APL

RetinaNet [33] 33.9 36.5 55.4 39.1 20.4 40.3 48.1
ATSS [66] 3 35.2 39.4 57.6 42.8 23.6 42.9 50.3
GFL [29] 3 3 37.2 40.2 58.4 43.3 23.3 44.0 52.2
ATSEPC [60, 66] 3 3 P, LC 25.0 42.1 59.9 45.5 24.6 46.1 55.0
UniverseNet 3 3 P, LC 3 c3-c5 3 17.3 46.7 65.0 50.7 29.2 50.6 61.4
UniverseNet+GFL 3 3 3 P, LC 3 c3-c5 3 17.5 47.5 65.8 51.8 29.2 51.6 62.5
UniverseNet-20.08d 3 3 3 P, LC 3 3 c3-c5 3 3 17.3 48.6 67.1 52.7 30.1 53.0 63.8
UniverseNet-20.08 3 3 3 LC 3 3 c5 3 3 24.9 47.5 66.0 51.9 28.9 52.1 61.9

UniverseNet-20.08 w/o SEPC [60] 3 3 3 c5 3 3 26.7 45.8 64.6 50.0 27.6 50.4 59.7
UniverseNet-20.08 w/o Res2Net-v1b [18] 3 3 3 LC 3 c5 3 3 32.8 44.7 62.8 48.4 27.1 48.8 59.5
UniverseNet-20.08 w/o DCN [13] 3 3 3 3 3 3 3 27.8 45.9 64.5 49.8 28.9 49.9 59.0
UniverseNet-20.08 w/o iBN, SyncBN [40, 60] 3 3 3 LC 3 c5 3 25.7 45.8 64.0 50.2 27.9 50.0 59.8
UniverseNet-20.08 w/o MStrain 3 3 3 LC 3 3 c5 3 24.8 45.9 64.5 49.6 27.4 50.5 60.1

Table 12: Architectures of UniverseNets with a summary of ablation studies on COCO
minival. See Sec. E.7 for step-by-step improvements. All results are based on MMDe-
tection [9] v2. The “Head” methods (ATSS and GFL) affect losses and training sample
selection. Res2: Res2Net-v1b [18]. PConv (Pyramid Convolution) and iBN (integrated
Batch Normalization) are the components of SEPC [60]. The DCN columns indicate where
to apply DCN. “P”: The PConv modules in the combined head of SEPC [60]. “LC”: The
extra head of SEPC for localization and classification [60]. “c3-c5”: conv3_x, conv4_x, and
conv5_x layers in ResNet-style backbones [22]. “c5”: conv5_x layers in ResNet-style back-
bones [22]. ATSEPC: ATSS with SEPC (without iBN). MStrain: Multi-scale training. FPS:
Frames per second on one V100 with mixed precision.

USB, we cannot calculate ASAP∞ on COCO because the absolute scales of COCO objects
are smaller than 1024 (we filled ASAP∞ on COCO with zero in experiments). Furthermore,
ASAP for large absolute scales may show unusual behavior. For example, in the evaluation
of ASAP∞ on M109s, all predictions larger than 1024 of absolute scales have larger IoUs
than 0.5 with an object of image resolution size (1654×1170).

We prefer RSAP to ASAP due to the above-mentioned weaknesses of ASAP. Absolute
scales may be important depending on whether and how participants resize images. In that
case, RSAP and ASAP can be used complementarily.

D Details of UniverseNets
For fast and accurate detectors for USOD, we designed UniverseNets. We adopted single-
stage detectors for efficiency. We show the detailed architectures in Table 12.

As a baseline model, we used the RetinaNet [33] implemented in MMDetection [9].
Specifically, the backbone is ResNet-50-B [23] (a variant of ResNet-50 [22], also known as
the PyTorch style). The neck is FPN [32]. We used focal loss [33], single-scale training, and
single-scale testing.

Built on the RetinaNet baseline, we designed UniverseNet by collecting human wisdom
about multi-scale object detection as of May 2020. We used ATSS [66] and SEPC without
iBN [60] (hereafter referred to as ATSEPC). The backbone is Res2Net-50-v1b [18]. We
adopted Deformable Convolutional Networks (DCN) [13] in the backbone and neck. We
used multi-scale training. Unless otherwise stated, we used single-scale testing for efficiency.

By adding GFL [29], SyncBN [40], and iBN [60], we designed three variants of Uni-
verseNet around August 2020. UniverseNet-20.08d heavily uses DCN [13]. UniverseNet-
20.08 speeds up inference (and training) by the light use of DCN [13, 60]. UniverseNet-
20.08s further speeds up inference using the ResNet-50-C [23] backbone.
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E Details of Experiments
Here, we show the details of experimental settings and results. See also the code to reproduce
our settings including minor hyperparameters.

E.1 Common Settings
We follow the learning rate schedules of MMDetection [9], which are similar to those of
Detectron [21]. Specifically, the learning rates are reduced by 10× in two predefined epochs.
Epochs for the first learning rate decay, the second decay, and ending training are (8,11,12)
for the 1× schedule, (16,22,24) for the 2× schedule, and (16,19,20) for the 20e schedule.
To avoid overfitting by small learning rates [45], the 20e schedule is reasonable. We mainly
used the 1× schedule (12 epochs).

We mainly used ImageNet [44] pre-trained backbones that are standard in MMDetec-
tion [9]. Some pre-trained backbones not supported in MMDetection were downloaded from
the repositories of Res2Net [18] and Swin Transformer [35]. We used the COCO pre-trained
models of the MMDetection [9] repository for several existing methods (Faster R-CNN [42]
with FPN [32], Cascade R-CNN [7], RetinaNet [33], ATSS [66], GFL [29], and Sparse R-
CNN [49]). We trained most models with mixed precision and 4 GPUs (× 4 images per
GPU). We mainly used NVIDIA T4 GPUs on the Google Cloud Platform. All results on
USB and all results of UniverseNets are single model results without ensemble. We could
not train each object detector multiple times with different random seeds to report error bars
because training object detectors is too computationally expensive.

E.2 Settings for Specific Methods
Many recent detectors [8, 35] adopt the AdamW optimizer [37]. Since AdamW does not
necessarily give better results than SGD, we follow the optimizer settings of the official
implementations and MMDetection [9]. Specifically, for COCO and WOD, we used AdamW
with an initial learning rate of 10−4 for DETR [8], Deformable DETR [68], ATSS [66] with
Swin-T [35], and ATSS [66] with ConvNeXt-T [36], and 2.5×10−5 for Sparse R-CNN [49].
The learning rate of the backbone is 10−5 for DETR [8] and Deformable DETR [68]. For
training ATSS [66] with ConvNeXt-T [36], we used layer-wise learning rate decay and a
stochastic depth rate of 0.2 (see [36]).

We trained YOLOX-L [19] with SGD and an initial learning rate of 2.5×10−3 for COCO
and WOD. The test scale on COCO is 1024×1024. Since YOLOX models are trained from
scratch [19], we trained a COCO model for 36 epochs (USB 2.0) such that it achieves similar
AP to a model trained for 12 epochs from an ImageNet pre-trained model [45]. We also
trained a COCO model for 24 epochs (USB 1.0).

We used multi-scale training for YOLOX-L [19] and UniverseNets. The range of shorter
side pixels for most models is 480–960, following prior work [60]. That for YOLOX-L [19]
on COCO is 512–1024, and that for UniverseNets on WOD is 640–1280. Since we do not
have sufficient computational resources, these hyperparameters have room for improvement.

For comparison with state-of-the-art methods on COCO, we used the 2× schedule (24
epochs) for most models and the 20e schedule (20 epochs) for UniverseNet-20.08d due to
overfitting with the 2× schedule. For comparison with state-of-the-art methods on WOD,
we trained UniverseNet on the WOD full training set for 7 epochs. We used a learning rate
of 10−3 for 6 epochs and 10−4 for the last epoch.
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Figure 6: Absolute Scale AP of popular
baseline methods.
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Figure 7: Absolute Scale AP of strong
baseline methods.

For comparison with state-of-the-art methods with TTA on COCO, we used soft vot-
ing with 13-scale testing and horizontal flipping following the original implementation of
ATSS [66]. Specifically, shorter side pixels are (400, 500, 600, 640, 700, 800, 900, 1000,
1100, 1200, 1300, 1400, 1800), while longer side pixels are their 1.667×. For the 13 test
scales, target objects are limited to corresponding 13 predefined ranges ((96, ∞), (96, ∞),
(64, ∞), (64, ∞), (64, ∞), (0, ∞), (0, ∞), (0, ∞), (0, 256), (0, 256), (0, 192), (0, 192), (0, 96)),
where each tuple denotes the minimum and maximum absolute scales. We also evaluated
5-scale TTA because the above-mentioned ATSS-style TTA is slow. We picked (400, 600,
800, 1000, 1200) for shorter side pixels, and ((96, ∞), (64, ∞), (0, ∞), (0, ∞), (0, 256)) for
absolute scale ranges.

For M109s, we used learning rates 8× those of COCO and WOD. The value is roughly
tuned based on a preliminary experiment with the RetinaNet [33] baseline model. For train-
ing ATSS [66] with different backbones (Swin-T [35] and ConvNeXt-T [36]), we used an
initial learning rate of 4×10−4, roughly tuned from choices {2×10−4,4×10−4,8×10−4}.

E.3 Evaluation with Scale-Wise Metrics
We show RSAP and ASAP of popular baseline methods on USB in Figures 4 and 6, re-
spectively. They do not increase monotonically but rather decrease at relative scales greater
than 1/4 or absolute scales greater than 512. The difficulty of very large objects may be
caused by truncation or unusual viewpoints [24]. Except for the issues of ASAP∞ discussed
in Sec. C.6, ASAP shows similar changes to RSAP. We conjecture that this is because image
resolutions do not change much in each dataset of USB. RSAP 1

64
and ASAP16 are less than

10%, which indicates the difficulty of tiny object detection [64]. RetinaNet [33] shows low
AP for small objects, while Faster R-CNN [42] with FPN [32] shows low AP for large ob-
jects. These results are consistent with the benchmark results of previous work [25], which
compares SSD [34] with Faster R-CNN without FPN on COCO. For further analysis, it will
be worth comparing the design choice of pyramid levels [33, 64].

We show RSAP and ASAP of strong baseline methods on USB in Figures 5 and 7,
respectively. UniverseNet-20.08 is more accurate for large objects, and YOLOX-L [19] is
more accurate for small objects. We conjecture that the former is due to SEPC [60] and
DCN [13] (see Sec. E.7 and E.8). For the latter, YOLOX may be biased toward small object
detection due to Mosaic augmentation [4] and the absence of pre-training [45] on ImageNet
that has larger objects than COCO [46].
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E.4 Details on Each Dataset
Tables 13, 14, and 15 show the results on COCO, WOD, and M109s, respectively.

Method AP AP50 AP75 APS APM APL

Faster R-CNN [42] 37.4 58.1 40.4 21.2 41.0 48.1
Cascade R-CNN [7] 40.3 58.6 44.0 22.5 43.8 52.9
RetinaNet [33] 36.5 55.4 39.1 20.4 40.3 48.1
ATSS [66] 39.4 57.6 42.8 23.6 42.9 50.3
GFL [29] 40.2 58.4 43.3 23.3 44.0 52.2
DETR [8] 22.2 39.7 22.0 6.7 22.4 36.8
Deformable DETR [68] 37.1 55.9 39.9 19.3 40.7 50.5
Sparse R-CNN [49] 37.9 56.0 40.5 20.7 40.0 53.5
ATSS [66]+Swin-T [35] 43.7 63.0 47.1 28.2 47.0 56.8
ATSS [66]+ConvNeXt-T [36] 45.5 64.7 49.5 28.0 49.1 59.1
ATSS [66]+SEPC [60] 42.1 59.9 45.5 24.6 46.1 55.0
ATSS [66]+DyHead [14] 43.3 60.9 47.2 26.6 47.1 55.8
YOLOX-L [19] (USB 1.0) 37.8 56.5 41.5 26.4 42.0 41.1
YOLOX-L [19] (USB 2.0) 41.1 60.2 45.3 29.1 45.8 45.5
UniverseNet 46.7 65.0 50.7 29.2 50.6 61.4
UniverseNet-20.08 w/o MStrain 45.9 64.5 49.6 27.4 50.5 60.1
UniverseNet-20.08 47.5 66.0 51.9 28.9 52.1 61.9

Table 13: Results on COCO minival.

Method AP AP50 AP75 APS APM APL veh. ped. cyc.

Faster R-CNN [42] 34.5 55.3 36.3 6.0 35.8 67.4 42.7 34.6 26.1
Cascade R-CNN [7] 36.4 56.3 38.6 6.5 38.1 70.6 44.5 36.3 28.5
RetinaNet [33] 32.5 52.2 33.7 2.6 32.8 67.9 40.0 32.5 25.0
ATSS [66] 35.4 56.2 37.0 6.1 36.6 69.8 43.6 35.6 27.0
GFL [29] 35.7 56.0 37.1 6.2 36.7 70.7 44.0 36.0 27.1
DETR [8] 17.8 35.1 15.6 0.7 10.8 48.1 24.5 16.2 12.6
Deformable DETR [68] 32.7 55.1 34.1 6.0 32.9 66.2 39.5 33.7 24.9
Sparse R-CNN [49] 32.8 54.3 33.9 7.2 33.6 65.1 38.7 33.4 26.2

ATSS [66]+Swin-T [35] 37.2 58.6 38.9 7.2 39.3 71.1 45.4 36.9 29.3
ATSS [66]+ConvNeXt-T [36] 38.3 59.9 40.1 7.4 40.1 72.9 46.4 37.8 30.6
ATSS [66]+SEPC [60] 35.0 55.3 36.5 5.8 35.5 70.5 43.5 35.3 26.3
ATSS [66]+DyHead [14] 37.1 57.8 39.1 6.8 39.1 72.0 45.4 37.1 28.9
YOLOX-L [19] (USB 1.0) 41.0 63.4 43.2 11.5 43.9 72.8 49.0 40.9 33.1
YOLOX-L [19] (USB 2.0) 41.6 64.1 43.9 12.0 44.4 73.5 49.3 41.3 34.1
UniverseNet 38.6 59.8 40.9 7.4 41.0 74.0 46.0 37.6 32.3
UniverseNet-20.08 w/o MStrain 37.9 58.8 39.4 7.8 39.2 72.9 45.9 37.5 30.2
UniverseNet-20.08 39.0 60.2 40.4 8.3 41.7 73.3 47.1 38.7 31.0

Table 14: Results on WOD f0val.

Method AP AP50 AP75 APS APM APL body face frame text

Faster R-CNN [42] 65.8 91.1 70.6 18.4 39.9 72.1 58.3 47.5 90.1 67.1
Cascade R-CNN [7] 67.6 90.6 72.0 17.9 41.9 74.3 60.8 48.2 92.5 69.0
RetinaNet [33] 65.3 90.5 69.5 15.7 38.9 71.9 58.3 46.3 88.8 67.7
ATSS [66] 66.5 90.1 70.8 16.8 38.9 74.0 60.9 44.6 91.3 69.0
GFL [29] 67.3 90.6 71.5 17.9 38.9 74.4 61.7 45.7 92.2 69.4
DETR [8] 31.2 63.0 27.1 1.1 8.2 41.3 24.8 16.0 65.0 19.1
Deformable DETR [68] 64.1 90.1 67.9 16.1 34.8 71.0 57.0 45.6 89.0 64.8
Sparse R-CNN [49] 63.1 85.8 66.3 15.3 33.8 70.3 54.2 45.5 88.9 63.5

ATSS [66]+Swin-T [35] 66.2 90.1 70.1 16.1 39.1 73.8 60.5 44.0 91.7 68.6
ATSS [66]+ConvNeXt-T [36] 67.4 90.8 71.5 16.5 39.8 75.0 62.9 45.3 92.1 69.2
ATSS [66]+SEPC [60] 67.1 90.2 71.5 16.2 39.8 74.9 62.3 44.6 92.1 69.4
ATSS [66]+DyHead [14] 67.9 90.6 72.3 17.1 42.9 75.5 63.4 45.3 92.7 70.1
YOLOX-L [19] (USB 1.0) 70.1 93.7 75.0 22.3 48.4 76.1 65.8 50.9 93.0 70.8
YOLOX-L [19] (USB 2.0) 70.2 93.6 75.0 22.6 47.5 76.1 65.9 51.0 93.1 70.7
UniverseNet 68.9 91.4 73.7 18.7 43.4 76.6 65.8 46.6 93.0 70.3
UniverseNet-20.08 w/o MStrain 68.3 91.2 72.2 17.9 40.9 75.6 63.3 46.3 93.1 70.3
UniverseNet-20.08 69.9 92.5 74.3 20.5 43.6 77.1 66.6 48.0 93.7 71.2

Table 15: Results on Manga109-s 15test.
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Protocol Method Backbone DCN Epoch Max test scale TTA FPS AP AP50 AP75 APS APM APL

Standard USB 1.0 Faster R-CNN [32, 42] ResNet-101 22 1333× 800 (14.2) 36.2 59.1 39.0 18.2 39.0 48.2
Standard USB 1.0 Cascade R-CNN [7] ResNet-101 19 1312× 800 (11.9) 42.8 62.1 46.3 23.7 45.5 55.2
Standard USB 1.0 RetinaNet [33] ResNet-101 18 1333× 800 (13.6) 39.1 59.1 42.3 21.8 42.7 50.2
Standard USB 1.0 FCOS [57] X-101 (64×4d) 24 1333× 800 ( 8.9) 44.7 64.1 48.4 27.6 47.5 55.6
Standard USB 1.0 ATSS [66] X-101 (64×4d) 3 24 1333× 800 10.6 47.7 66.5 51.9 29.7 50.8 59.4
Standard USB 1.0 FreeAnchor+SEPC [60] X-101 (64×4d) 3 24 1333× 800 — 50.1 69.8 54.3 31.3 53.3 63.7
Standard USB 1.0 PAA [28] X-101 (64×4d) 3 24 1333× 800 — 49.0 67.8 53.3 30.2 52.8 62.2
Standard USB 1.0 PAA [28] X-152 (32×8d) 3 24 1333× 800 — 50.8 69.7 55.1 31.4 54.7 65.2
Standard USB 1.0 RepPoints v2 [11] X-101 (64×4d) 3 24 1333× 800 ( 3.8) 49.4 68.9 53.4 30.3 52.1 62.3
Standard USB 1.0 RelationNet++ [12] X-101 (64×4d) 3 20 1333× 800 10.3 50.3 69.0 55.0 32.8 55.0 65.8
Standard USB 1.0 GFL [29] ResNet-50 24 1333× 800 37.2 43.1 62.0 46.8 26.0 46.7 52.3
Standard USB 1.0 GFL [29] ResNet-101 24 1333× 800 29.5 45.0 63.7 48.9 27.2 48.8 54.5
Standard USB 1.0 GFL [29] ResNet-101 3 24 1333× 800 22.8 47.3 66.3 51.4 28.0 51.1 59.2
Standard USB 1.0 GFL [29] X-101 (32×4d) 3 24 1333× 800 15.4 48.2 67.4 52.6 29.2 51.7 60.2
Standard USB 1.0 UniverseNet-20.08s ResNet-50-C 3 24 1333× 800 31.6 47.4 66.0 51.4 28.3 50.8 59.5
Standard USB 1.0 UniverseNet-20.08 Res2Net-50-v1b 3 24 1333× 800 24.9 48.8 67.5 53.0 30.1 52.3 61.1
Standard USB 1.0 UniverseNet-20.08d Res2Net-101-v1b 3 20 1333× 800 11.7 51.3 70.0 55.8 31.7 55.3 64.9

Large USB 1.0 UniverseNet-20.08d Res2Net-101-v1b 3 20 1493× 896 11.6 51.5 70.2 56.0 32.8 55.5 63.7
Large USB 1.0 UniverseNet-20.08d Res2Net-101-v1b 3 20 2000×1200 5 — 53.8 71.5 59.4 35.3 57.3 67.3
Huge USB 1.0 ATSS [66] X-101 (64×4d) 3 24 3000×1800 13 — 50.7 68.9 56.3 33.2 52.9 62.4
Huge USB 1.0 PAA [28] X-101 (64×4d) 3 24 3000×1800 13 — 51.4 69.7 57.0 34.0 53.8 64.0
Huge USB 1.0 PAA [28] X-152 (32×8d) 3 24 3000×1800 13 — 53.5 71.6 59.1 36.0 56.3 66.9
Huge USB 1.0 RepPoints v2 [11] X-101 (64×4d) 3 24 3000×1800 13 — 52.1 70.1 57.5 34.5 54.6 63.6
Huge USB 1.0 RelationNet++ [12] X-101 (64×4d) 3 20 3000×1800 13 — 52.7 70.4 58.3 35.8 55.3 64.7
Huge USB 1.0 UniverseNet-20.08d Res2Net-101-v1b 3 20 3000×1800 13 — 54.1 71.6 59.9 35.8 57.2 67.4
Huge USB 2.0 TSD [47] SENet-154 3 34 2000×1400 4 — 51.2 71.9 56.0 33.8 54.8 64.2

Huge USB 2.5 DetectoRS [41] X-101 (32×4d) 3 40 2400×1600 5 — 54.7 73.5 60.1 37.4 57.3 66.4
Mini USB 3.0 EfficientDet-D0 [55] EfficientNet-B0 300 512× 512 98.0 33.8 52.2 35.8 12.0 38.3 51.2
Mini USB 3.1 YOLOv4 [4] CSPDarknet-53 273 512× 512 83 43.0 64.9 46.5 24.3 46.1 55.2
Standard USB 3.0 EfficientDet-D2 [55] EfficientNet-B2 300 768× 768 56.5 43.0 62.3 46.2 22.5 47.0 58.4
Standard USB 3.0 EfficientDet-D4 [55] EfficientNet-B4 300 1024×1024 23.4 49.4 69.0 53.4 30.3 53.2 63.2
Standard USB 3.1 YOLOv4 [4] CSPDarknet-53 273 608× 608 62 43.5 65.7 47.3 26.7 46.7 53.3
Large USB 3.0 EfficientDet-D5 [55] EfficientNet-B5 300 1280×1280 13.8 50.7 70.2 54.7 33.2 53.9 63.2
Large USB 3.0 EfficientDet-D6 [55] EfficientNet-B6 300 1280×1280 10.8 51.7 71.2 56.0 34.1 55.2 64.1
Large USB 3.0 EfficientDet-D7 [55] EfficientNet-B6 300 1536×1536 8.2 52.2 71.4 56.3 34.8 55.5 64.6
Freestyle RetinaNet+SpineNet [16] SpineNet-190 400 1280×1280 — 52.1 71.8 56.5 35.4 55.0 63.6
Freestyle EfficientDet-D7x [56] EfficientNet-B7 600 1536×1536 6.5 55.1 74.3 59.9 37.2 57.9 68.0

Table 16: State-of-the-art methods on COCO test-dev. We classify methods by the pro-
posed protocols without compatibility. X in the Backbone column denotes ResNeXt [62].
See method papers for other backbones. TTA: Test-time augmentation including horizontal
flip and multi-scale testing (numbers denote scales). FPS values without and with parenthe-
ses were measured on V100 with mixed precision and other environments, respectively. We
measured the FPS of GFL [29] models in our environment and estimated those of ATSS [66]
and RelationNet++ [12] based on the measured values and [12, 29]. Other methods’ settings
are based on conference papers, their arXiv versions, and authors’ codes. Values shown in
gray were estimated from descriptions in papers and codes. Some FPS values are from [29].

E.5 Rethinking COCO with USB Protocols

We classify state-of-the-art methods on COCO test-dev (as of November 14, 2020) by
the proposed protocols without compatibility. The results are shown in Table 16. Although
state-of-the-art detectors on the COCO benchmark were trained with various settings, the
introduced divisions enable us to compare methods in each division. UniverseNet-20.08d
achieves the highest AP (51.3%) in the Standard USB 1.0 protocol. Despite 12.5× fewer
epochs, the speed-accuracy trade-offs of UniverseNets are comparable to those of Efficient-
Det [55]. With 13-scale TTA, UniverseNet-20.08d achieves the highest AP (54.1%) in the
Huge USB 1.0 protocol. Results in higher protocols than USB 1.0 are scattered. If we ignore
the difference of hyperparameter optimization, YOLOv4 [4] shows a better speed-accuracy
trade-off than EfficientDet [55] in Standard USB 3.x.

Comparisons across different divisions are difficult. Especially, long training is prob-
lematic because it can secretly increase AP without decreasing FPS, unlike large test scales.
Nevertheless, the EfficientDet [55], YOLOv4 [4], and SpineNet [16] papers compare meth-

Citation
Citation
{Lin, Doll{á}r, Girshick, He, Hariharan, and Belongie} 2017{}

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Cai and Vasconcelos} 2018

Citation
Citation
{Lin, Goyal, Girshick, He, and Doll{á}r} 2017{}

Citation
Citation
{Tian, Shen, Chen, and He} 2019

Citation
Citation
{Zhang, Chi, Yao, Lei, and Li} 2020

Citation
Citation
{Wang, Zhang, Yu, Feng, and Zhang} 2020{}

Citation
Citation
{Kim and Lee} 2020

Citation
Citation
{Kim and Lee} 2020

Citation
Citation
{Chen, Zhang, Cao, Wang, Lin, and Hu} 2020{}

Citation
Citation
{Chi, Wei, and Hu} 2020

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Zhang, Chi, Yao, Lei, and Li} 2020

Citation
Citation
{Kim and Lee} 2020

Citation
Citation
{Kim and Lee} 2020

Citation
Citation
{Chen, Zhang, Cao, Wang, Lin, and Hu} 2020{}

Citation
Citation
{Chi, Wei, and Hu} 2020

Citation
Citation
{Song, Liu, and Wang} 2020

Citation
Citation
{Qiao, Chen, and Yuille} 2020

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Du, Lin, Jin, Ghiasi, Tan, Cui, Le, and Song} 2020

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Xie, Girshick, Doll{á}r, Tu, and He} 2017

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Zhang, Chi, Yao, Lei, and Li} 2020

Citation
Citation
{Chi, Wei, and Hu} 2020

Citation
Citation
{Chi, Wei, and Hu} 2020

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Li, Wang, Wu, Chen, Hu, Li, Tang, and Yang} 2020

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Tan, Pang, and Le} 2020{}

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Du, Lin, Jin, Ghiasi, Tan, Cui, Le, and Song} 2020



10 YOSUKE SHINYA: USB: UNIVERSAL-SCALE OBJECT DETECTION BENCHMARK

Rank Method
# Models

AP/L2
Multi-stage Single-stage

Methods including multi-stage detector:
1 RW-TSDet [26] 6+ 74.43
2 HorizonDet [10] 4 8 70.28
3 SPNAS-Noah [63] 2 69.43

Single-stage detectors:
7 UniverseNet (Ours) 1 67.42
13 YOLO V4 [4] 1+ 58.08
14 ATSS-Efficientnet [54, 66] 1+ 56.99

Table 17: Waymo Open Dataset Challenge 2020 2D detection [1].

ods in their tables without specifying the difference in training epochs. The compatibility of
the USB training protocols resolves this disorder. We hope that many papers report results
with the protocols for inclusive, healthy, and sustainable development of detectors.

To simulate the compatibility from Standard USB 3.0 to 1.0, we refer to the training log
of the EfficientDet author. The AP of EfficientDet-D4 [55] on COCO minival is 43.8%
at 23 epoch [53]. Although it could be improved by changing the learning rate schedule,
EfficientDet’s inference efficiency is not compatible with training efficiency.

E.6 Comparison with State-of-the-Art
WOD. For comparison with state-of-the-art methods on WOD, we submitted the detection
results of UniverseNet to the Waymo Open Dataset Challenge 2020 2D detection, a com-
petition held at a CVPR 2020 workshop. The primary metric is AP/L2, a KITTI-style AP
evaluated with LEVEL_2 objects [1, 48]. We used multi-scale testing with soft-NMS [5].
The shorter side pixels of test scales are (960,1600,2240), including 8 pixels of padding.
These scales enable utilizing SEPC [60] (see Sec. E.8) and detecting small objects. Table 17
shows the top teams’ results. UniverseNet achieves 67.42% AP/L2 without multi-stage de-
tectors, ensembles, expert models, or heavy backbones, unlike other top methods. RW-
TSDet [26] overwhelms other multi-stage detectors, whereas UniverseNet overwhelms other
single-stage detectors. These two methods used light backbones and large test scales [3]. In-
terestingly, the maximum test scales are the same (3360×2240). We conjecture that this is
not a coincidence but a convergence caused by searching the accuracy saturation point.
Manga109-s. To the best of our knowledge, no prior work has reported detection results
on the Manga109-s dataset (87 volumes). Although many settings differ, the state-of-the-art
method on the full Manga109 dataset (109 volumes, non-public to commercial organiza-
tions) achieves 77.1–92.0% (mean: 84.2%) AP50 on ten test volumes [39]. The mean AP50
of UniverseNet-20.08 on the 15test set (92.5%) is higher than those results.

E.7 Ablation Studies for UniverseNets
We show the results of ablation studies for UniverseNets on COCO in Table 18. As shown
in Table 18a, ATSEPC (ATSS [66] with SEPC without iBN [60]) outperforms ATSS by a
large margin. The effectiveness of SEPC for ATSS is consistent with those for other detec-
tors reported in the SEPC paper [60]. As shown in Table 18b, UniverseNet further improves
AP metrics by ∼5% by adopting Res2Net-v1b [18], DCN [13], and multi-scale training. As
shown in Table 18c, adopting GFL [29] improves AP by 0.8%. There is room for improve-
ment of APS in the Quality Focal Loss of GFL [29]. As shown in Table 18d, UniverseNet-
20.08d achieves 48.6% AP by making more use of BatchNorm (SyncBN [40] and iBN [60]).
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Method AP AP50 AP75 APS APM APL

ATSS [66] 39.4 57.6 42.8 23.6 42.9 50.3
ATSEPC [60, 66] 42.1 59.9 45.5 24.6 46.1 55.0

(a) AP improvements by SEPC without iBN [60].

Method AP AP50 AP75 APS APM APL

ATSEPC [60, 66] 42.1 59.9 45.5 24.6 46.1 55.0
UniverseNet 46.7 65.0 50.7 29.2 50.6 61.4

(b) AP improvements by Res2Net-v1b [18],
DCN [13], and multi-scale training.

Method AP AP50 AP75 APS APM APL

UniverseNet 46.7 65.0 50.7 29.2 50.6 61.4
UniverseNet+GFL 47.5 65.8 51.8 29.2 51.6 62.5

(c) AP improvements by GFL [29].

Method AP AP50 AP75 APS APM APL

UniverseNet+GFL 47.5 65.8 51.8 29.2 51.6 62.5
UniverseNet-20.08d 48.6 67.1 52.7 30.1 53.0 63.8

(d) AP improvements by SyncBN [40] and iBN [60].

Method DCN FPS AP AP50 AP75 APS APM APL

UniverseNet-20.08d heavy 17.3 48.6 67.1 52.7 30.1 53.0 63.8
UniverseNet-20.08 light 24.9 47.5 66.0 51.9 28.9 52.1 61.9

(e) Speeding up by the light use of DCN [13, 60].

Method FPS AP AP50 AP75 APS APM APL

UniverseNet-20.08 24.9 47.5 66.0 51.9 28.9 52.1 61.9
w/o SEPC [60] 26.7 45.8 64.6 50.0 27.6 50.4 59.7
w/o Res2Net-v1b [18] 32.8 44.7 62.8 48.4 27.1 48.8 59.5
w/o DCN [13] 27.8 45.9 64.5 49.8 28.9 49.9 59.0
w/o multi-scale training 24.8 45.9 64.5 49.6 27.4 50.5 60.1
w/o SyncBN, iBN [40, 60] 25.7 45.8 64.0 50.2 27.9 50.0 59.8

(f) Ablation from UniverseNet-20.08. Replacing Res2Net-
v1b backbone with ResNet-B [23] has the largest effects.

Backbone FPS AP AP50 AP75 APS APM APL

ResNet-50-B [23] 32.8 44.7 62.8 48.4 27.1 48.8 59.5
ResNet-50-C [23] 32.4 45.8 64.2 50.0 28.8 50.1 60.0
Res2Net-50 [18] 25.0 46.3 64.7 50.3 28.2 50.6 60.8
Res2Net-50-v1b [18] 24.9 47.5 66.0 51.9 28.9 52.1 61.9

(g) UniverseNet-20.08 with different backbones.
Table 18: Ablation studies on COCO minival.

It is much more accurate than other models trained for 12 epochs using ResNet-50-level
backbones (e.g., ATSS: 39.4% [9, 66], GFL: 40.2% [9, 29]). On the other hand, the infer-
ence is not so fast (less than 20 FPS) due to the heavy use of DCN [13]. UniverseNet-20.08
speeds up inference by the light use of DCN [13, 60]. As shown in Table 18e, UniverseNet-
20.08 is 1.4× faster than UniverseNet-20.08d at the cost of a ∼1% AP drop. To further
verify the effectiveness of each technique, we conducted ablation from UniverseNet-20.08
shown in Table 18f. All techniques contribute to the high AP of UniverseNet-20.08. Ablating
the Res2Net-v1b backbone (replacing Res2Net-50-v1b [18] with ResNet-50-B [23]) has the
largest effects. Res2Net-v1b improves AP by 2.8% and increases the inference time by 1.3×.
To further investigate the effectiveness of backbones, we trained variants of UniverseNet-
20.08 as shown in Table 18g. Although the Res2Net module [18] makes inference slower,
the deep stem used in ResNet-50-C [23] and Res2Net-50-v1b [18] improves AP metrics with
similar speeds. UniverseNet-20.08s (the variant using the ResNet-50-C backbone) shows a
good speed-accuracy trade-off by achieving 45.8% AP and over 30 FPS.

E.8 Effects of Test Scales

We show the results on WOD at different test scales in Figure 8a. Single-stage detectors
require larger test scales than multi-stage detectors to achieve peak performance, probably
because they cannot extract features from precisely localized region proposals. Although
ATSEPC shows lower AP than ATSS at the default test scale (1248×832 in Standard USB),
it outperforms ATSS at larger test scales (e.g., 1920×1280 in Large USB). We conjecture that
we should enlarge object scales in images to utilize SEPC [60] because its DCN [13] enlarges
effective receptive fields. SEPC and DCN prefer large objects empirically (Tables 18a, 18f,
[13, 60]), and DCN [13] cannot increase the sampling points for objects smaller than the
kernel size in principle. By utilizing the characteristics of SEPC and multi-scale training,
UniverseNets achieve the highest AP in a wide range of test scales.
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(b) KITTI-style AP
Figure 8: Test scales vs. different AP metrics on WOD f0val.

Pre-training AP AP50 AP75 APS APM APL body face frame text
ImageNet 68.9 92.2 73.3 19.9 42.6 75.8 64.3 47.6 93.0 70.7
COCO 1× 69.9 92.5 74.3 20.5 43.6 77.1 66.6 48.0 93.7 71.2
COCO 2× 69.8 92.3 74.0 20.5 43.4 77.0 66.5 47.8 93.8 71.2

Table 19: UniverseNet-20.08 on Manga109-s 15test with different pre-trained models.

E.9 Evaluation with KITTI-Style AP

We evaluated the KITTI-style AP (KAP) on WOD. KAP is a metric used in benchmarks for
autonomous driving [20, 48]. Using different IoU thresholds (0.7 for vehicles, and 0.5 for
pedestrians and cyclists), KAP is calculated as KAP=(AP0.7,veh.+AP0.5,ped.+AP0.5,cyc.)/3.
The results of KAP are shown in Figure 8b. GFL [29] and Cascade R-CNN [7], which focus
on localization quality, are less effective for KAP.

E.10 Effects of COCO Pre-Training

To verify the effects of COCO pre-training, we trained UniverseNet-20.08 on M109s from
different pre-trained models. Table 19 shows the results. COCO pre-training improves all
the metrics, especially body AP.
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