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Abstract

Self-supervised contrastive learning has demonstrated great potential in learning vi-
sual representations. Despite their success in various downstream tasks such as image
classification and object detection, self-supervised pre-training for fine-grained scenarios
is not fully explored. We point out that current contrastive methods are prone to mem-
orizing background/foreground texture and therefore have a limitation in localizing the
foreground object. Analysis suggests that learning to extract discriminative texture infor-
mation and localization are equally crucial for fine-grained self-supervised pre-training.
Based on our findings, we introduce cross-view saliency alignment (CVSA), a contrastive
learning framework that first crops and swaps saliency regions of images as a novel view
generation and then guides the model to localize on foreground objects via a cross-view
alignment loss. Extensive experiments on both small- and large-scale fine-grained classi-
fication benchmarks show that CVSA significantly improves the learned representation.

1 Introduction
Learning visual representations without supervision by leveraging pretext tasks has become
increasingly popular. Various learning approaches such as colorization [56], Rel-Loc [31],
Rot-Pred [13] have been proposed to learn such representations. The objective of these pre-
text tasks is to capture invariant features through predicting transformations applied to the
same image. More recently, self-supervised representation learning has witnessed signifi-
cant progress by the use of contrastive loss [4, 16, 17, 18, 28]. Despite that contrastive-based
methods have even outperformed supervised methods under some circumstances, their suc-
cess has largely been confined to large-scale general-purpose datasets (coarse-grained) such
as ImageNet [22]. We argue that current contrastive learning methods only work on coarse-
grained iconic images with large foreground objects residing in the background with infor-
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Figure 1: Comparison of RandomResizedCrop (RRC) and the proposed Saliency Swap
(SS). We visualize Grad-CAM [35] of linear classifiers for pre-trained models. (a) shows
the most commonly adopted RRC in contrastive learning (CL) methods. The random nature
may cause views to contain mainly the backgrounds of the image leading to semantic incon-
sistency across views. (b) shows our proposed SS, which crops from regions of interest of
the reference image and replaces the saliency regions of two randomly selected background
images to guarantee semantic consistency.

mative discriminative texture (e.g., ImageNet) but perform poorly when background texture
provides little clue (e.g., CUB-200-2011 [42]) for fine-grained separation.

To bridge the substantial gap between self-supervised and supervised representation
learning on fine-grained object recognition, we first analyze and compare knowledge learned
by various self-supervised methods and supervised methods during pre-training. We find that
current self-supervised contrastive learning methods tend to learn low-level texture informa-
tion and lack the localization ability of the foreground object. In contrast, the supervised
method shows better localization ability. Specifically, we show that the incompetence of
localization of current contrastive learning is primarily due to the commonly adopted Ran-
domResizedCrop (RRC) augmentation, where a random size patch at a random location is
cropped and resized to the original size. The model then might learn a semantic represen-
tation of the bird by contrasting the tree and the wing of the bird, as illustrated in Figure 1.
This practice may be reasonable for coarse-grained recognition if background cues are more
associated with the class than the foreground cues (e.g. p(bird|tree) > p(car|tree)). How-
ever, the background of the image being a tree is not as informative when distinguishing
bird species. Consequently, the model learns by cheating on picking low-level texture clues
(usually from the background) instead of learning by localizing the foreground. This phe-
nomenon is mutual for existing contrastive methods such as MoCo.v2[5], BYOL[15] despite
different contrastive mechanisms.

The devil lies in semantically discriminative fine-grained feature extraction for a success-
ful contrastive pre-training. To remedy the inadequacy of fine-grained feature capturing due
to failure in localizing to discriminative regions, we propose to empower contrastive learn-
ing with localization ability by aligning fine-grained semantic features across augmented
views. In particular, we come up with a pre-training framework called Cross-View Saliency
Alignment (CVSA). CVSA consists of two algorithmic components: (a) A general plug-
and-play data augmentation strategy called SaliencySwap, which swaps the saliency region
of the reference image with the saliency region of a randomly selected background image.
SaliencySwap ensures semantic consistency between augmented views while introducing
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background variation. A demonstration of SaliencySwap in comparison with RRC is shown
in Figure 1. An alignment loss that provides an explicit localization supervision signal by
forcing the model to give the highest correspondence response intensity of the foreground
object across views.

On top of the proposed CVSA, to further bridge the performance gap between self-
supervised and supervised representation learning on the fine-grained recognition problem,
we offer a dual-stage pre-training setting, which utilizes coarse-grained datasets for low-
level feature extraction and fine-grained datasets for high-level target discrimination and
localization. In short, this paper makes the following contributions:

• We delve deep into the knowledge learned by various self-supervised methods com-
pared to supervised methods during the fine-grained pre-training phase and point out
the cause of limitations.

• We develop a novel contrastive learning framework for fine-grained recognition, which
contains a data augmentation technique called SaliencySwap to guarantee semantic
consistency between views and an alignment objective which enables the model to
localize.

• Extensive experiments show consistent performance gain of CVSA under various pre-
training stage settings on small- and large-scale fine-grained benchmarks.

2 Cross-view Saliency Alignment
We explore the capabilities learned out of three classes of pre-training mechanisms, namely
self-supervised contrastive, non-contrastive, and supervised methods. In particular, we focus
on discriminative feature extraction and object localization ability. Without loss of gener-
ality, we select MoCo.v2, BYOL, Rot-Pred, and supervised classification for comparison.
We discover that compared to supervised methods, self-supervised methods show worse ob-
ject localization ability and discriminative feature extraction ability is also crucial for
fine-grained categorization. The details of the experiments and corresponding analysis are
provided in Appendix A. Based on our observations, given a fine-grained classification prob-
lem, similar to [1], we assume X to be a set of all samples with an underlying set of discrete
latent classes C that represent semantic content, we obtain the joint distribution between each
sample x and its class c:

p(c,x) = p(c|x f ore) · p(x f ore|x), (1)

where x f ore stands for the foreground object. The intuition behind this factorization suggests
that given an image of a fine-grained object, the model should localize the foreground object
(p(x f ore|x)) to discriminate the species of the foreground object (p(c|x f ore)). Following this
formulation, we propose a dual-stage pre-training pipeline for self-supervised fine-grained
recognition with the first-stage learning discriminative texture extraction ability and second-
stage learning localization capability.

2.1 SaliencySwap
SaliencySwap maximally utilizes the saliency information for foreground semantic consis-
tency across views while introducing background variation. SaliencySwap guarantees that
each view at least contains part of the foreground object and thus prevents the encoder from
learning irrelevant feature representation through pure background information.
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Figure 2: Learning paradigm of Cross-view Saliency Alignment. (a) The network parameters
in red are an exponential moving average of the purple part, and the contrastive loss LCont
is calculated between pq,ml p and hk,ml p (stop-gradient) as BYOL. (b) Saliency alignment
module calculates LAlign between predicted attention maps and input saliency masks M.

2.1.1 Source Saliency Detection

A saliency detection algorithm generates a saliency map that indicates the objects of interest
(primarily foreground). Let I ∈ RW×H×C be an image in the training set, define ψ to be a
saliency detection algorithm, then the output saliency map Si, j = ψ(Ii, j) ∈ RW×H indicates
the saliency intensity value at pixel Ii, j. The saliency information can be noisy. Therefore,
we seek to find a bounding box B = (l, t,Wb,Hb) of the foreground object with the highest
averaged saliency information satisfying the following objective function:

argmax
Wb,Hb,l,t

i=l+Wb

∑
i=l

j=t+Hb

∑
j=t

Si, j

Wb ×Hb
. (2)

A corresponding binary saliency mask M ∈ RW×H is defined by filling with 1 within the
bounding box B, otherwise 0. Then we crop a random patch within the bounding box B.
Similar to RRC, the size of the patch is determined based on an area ratio (to the area of the
bounding box), which is sampled from a uniform distribution U(λ ,1).

2.1.2 Foreground Background Fusion

We then combine the cropped foreground patch from the source image (foreground image)
with another randomly selected image (background image). To avoid saliency ambiguity,
we restrict each augmented view to contain the saliency information only of one semantic
object. We consider two ways of merging: (I) The background dataset is the same as the
foreground dataset. The saliency information of the background needs to be eliminated. We
first calculate the bounding box B f , Bb of the foreground and background images, respec-
tively, using Eqn. 2. For scenic images, we use the bounding box with maximum area. Then
select a random patch from the foreground B f and resize it to the shape of Bb. Finally, we
replace Bb with the resized foreground patch. (II) The background dataset is different from
the foreground dataset. We choose a dataset like COCO rather than the iconic dataset like IN
such that the background dataset is rich in environments. Again, we calculate the bounding
box B f of the foreground and select a random patch. Then we resize the selected patch based
on an area ratio (to the area of the background) which is sampled from a uniform distribution
(β ,1). Finally, we ’paste’ the resized patch to a random location in the background.
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2.2 Cross-view Saliency Alignment
Given two views Iq and Ik of Image I augmented by a pipeline containing SaliencySwap and
other augmentation operations such as random flipping and color jittering. Define Mk and
Mq to be their saliency masks, respectively. Let zl

q and zl
k ∈RW l×H l×Cl

be the Cl dimensional
H l ×W l feature maps encoded by an encoder network z = f (I) (e.g., ResNet) truncated at
stage l. We adopt two types of non-linear projector necks g(·) on top of the encoder to
form a d-dim projection. The two-layer MLP projector generates the following projection
hml p = gml p(z) as proposed by SimCLR. Similarly, a convolutional projection hconv is given
by a convolution projector gconv, which consists of two 1×1 convolution layers with a batch
normalization layer and a ReLU layer in between. Following BYOL, two predictor heads
pml p(·) and pconv(·), which have the same network structures except for different input di-
mensions, are adopted to match the output of one view to the other. Specially, pconv(·) is
designed for saliency alignment. Figure 2 (a) shows the overall framework.

Cross-view Attention. We seek to capitalize on the pixel-level foreground semantic
interactions between the feature maps of two different augmented views. We first build a
cross-view attention map:

Al
q,k = pconv(hl

q,conv)⊗hl
k,conv

T
, (3)

where Al
q,k denotes the attention map is of view k w.r.t. view q, T denotes matrix transposi-

tion, and ⊗ denotes matrix multiplication. The location-aware attention map Al ∈RW lH l×H lW l

indicates a pair-wise spatial correspondence between any pixel from pconv(hl
q,conv) and any

pixel from hl
k,conv. Symetrically, we get the attention map Al

k,q of view q w.r.t. view k by
interchanging q and k of Eqn. 3.

Joint Saliency Alignment. To enhance the encoder’s ability to identify the location of
the foreground object, we propose to align the saliency mask with a correspondence intensity
matrix that captures the pixel-level correlation from the feature map of one view to the other,
as shown in Figure 2 (b). The correspondence intensity matrix C is formulated as follows:

Cl
q,k = max(σ(Al

q,k)), (4)

where σ(·) denotes sigmoid activation. Note that the shape of Cl
q,k is W l ×H l and the max(·)

operation is performed over the second axis of Al
q,k. We then define a symmetrized alignment

loss between the saliency mask M and the correspondence intensity matrix C:

LAlign =
∥∥∥δ

l(Mq)−Cl
q,k

∥∥∥2
+
∥∥∥δ

l(Mk)−Cl
k,q

∥∥∥2
, (5)

where δ l(·) : RW×H → RW l×H l
denotes the bilinear downsampling operation. The proposed

alignment loss restricts the most cross-view correlated pixels to the saliency region and thus
gives the model localization ability. In addition, leveraging cross-layer semantics also en-
hances the representation of multi-scale learning.

Joint Objective. We define a contrastive loss LCont with the prediction vector pq,ml p
def
=

pml p(hq,ml p) and the projection vector hk,ml p using negative cosine similarity D(·) as:

LCont =
1
2
D(pq,ml p,hk,ml p)+

1
2
D(pk,ml p,hq,ml p), (6)

where D(p,h) =− p
∥p∥2

· h
∥h∥2

. The joint objective for the second-stage pretext task is:

LCV SA = LCont +LAlign. (7)
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3 Experiments

3.1 Experimental settings
Implementation details. We use ResNet as the encoder f followed by two projectors and
two predictor sub-networks. During the first-stage pre-training, we follow the exact experi-
mental setup in BYOL. For the second-stage in dual-stage pre-training, the model is initial-
ized with the pre-trained weight from the first-stage and the first two stages of the ResNet
backbone are frozen. We use a learning rate of lr×BatchSize/256 with BatchSize = 1024
and a base lr selected from {0.3,0.6,0.9,1.2}. The embedding dimension is set to d = 256
as BYOL. As for image augmentations, we follow the settings in MoCo.v2 for all contrastive
learning methods. We replace RandomResizedCrop (RRC) with the proposed SaliencySwap
(SS) and adopt all other augmentations in MoCo.v2 [5], detailed in Appendix A. We grid
search cropping scale ratio of SaliencySwap λ ∈ {0.08,0.2,0.5,0.8} and set λ = 0.5 by de-
fault. To balance the performance and computational cost, we adopt the stage l = 4 for the
alignment. For simplicity, we use the ground truth bounding box of fine-grained datasets
because most saliency detectors are trained in a supervised manner. An ablation study of the
performance using different detection algorithms is given in Appendix B. We use the same
pre-training setup as in Appendix A.1 for other unstated setups.

Dataset. We assess the performance of the representation pre-trained using dual-stage,
first-stage only and second-stage only on four small-scale and one large-scale fine-grained
benchmarks: 1) CUB-200-2011 [42] (CUB) contains 11,788 images from 200 wild bird
species, 2) Stanford-Cars [21] (Cars) contains 16,185 images of 196 car subcategories, 3)
FGVC-Aircraft [29] (Aifcrafts) contains 10,000 images of 100 classes of aircrafts, 4) NA-
birds [41] (NAbirds) is a large dataset with 48,562 images for over 555 bird classes and 5)
iNaturalist2018 (iNat2018) [19] is an unbalanced long tail dataset which contains 437,513
images of 8,142 taxa coming from 14 super-classes. We follow the standard dataset parti-
tion in the original works. For the first-stage pre-training, we adopt two popular datasets:
1) ImageNet-1k (IN-1k) contains 1.28 million of training images. 2) MS-COCO (COCO)
contains 118k images with more complex scenes of many objects.

Hyperparameters for CVSA. We search for the optimal hyperparameters for our pro-
posed CVSA on the validation set of fine-grained datasets using ResNet-18 as the encoder.
We set the batch size to 1024 and follow other training settings of BYOL [15]. The base
learning rate is set to 0.3 for the Cars dataset and 0.6 for the other three datasets. The crop-
ping scale ratio of SaliencySwap is λ = 0.5 by default. As for the stage l in CVSA, we
analyze the performance and the computational cost of using l ∈ {3,4} since the first two
stages are frozen in the dual-stage. Furthermore, we find that using l = 4 achieves a balance
between the performance and the computation cost.

3.2 Comparison with State-of-the-art
We choose two hand-crafted methods (Rel-Loc and Rot-Pred), three commonly used con-
trastive learning methods (SimCLR, MoCo.v2, and BYOL), and three extension methods
(LooC*, DiLo, and InsLoc) for comparison. DiLo and InsLoc are reproduced using official
code, with other methods reproduced using OpenMixup [24]. LooC* denotes its rotation
version reproduced by us. Since our approach extends BYOL, we choose BYOL as the base-
line. Notice that grey indicates baseline, green denotes improvement over baseline while
red for degradation performance, bold denotes the best performance.
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Methods CUB NAbirds Aircrafts Cars
Random 58.51 (-6.34) 65.78 (-6.76) 70.58 (-2.02) 70.51 (-5.36)
Rel-Loc 65.89 (+1.04) 72.60 (+0.06) 72.24 (-0.36) 75.27 (-0.60)
Rot-Pred 66.67 (+1.82) 73.01 (+0.47) 72.67 (+0.07) 75.48 (-0.39)
SimCLR 63.43 (-1.42) 72.05 (-0.49) 72.42 (-0.18) 75.12 (-0.75)
MoCo.v2 63.21 (-1.64) 71.36 (-1.18) 71.93 (-0.67) 74.89 (-0.98)
LooC* 66.42 (+1.57) 72.84 (+0.30) 72.49 (-0.11) 75.69 (-0.18)
InsLoc 64.87 (+0.02) 72.80 (+0.26) 73.43 (+0.83) 76.61 (+0.64)
BYOL 64.85 (+0.00) 72.54 (+0.00) 72.60 (+0.00) 75.87 (+0.00)
BYOL+DiLo 66.16 (+1.31) 73.12 (+0.58) 73.52 (+0.92) 76.36 (+0.49)
BYOL+CVSA 66.88 (+2.03) 73.75 (+1.21) 74.55 (+1.95) 77.45 (+1.58)

Table 1: Comparison of second-stage only
pre-training on fine-grained benchmarks.
Top-1 accuracy (%) under fine-tuned evalua-
tion is reported. Random denotes random ini-
tialized models in the second-stage. BYOL is
regarded as the baseline by default.

Methods Stage 2 CUB NAbirds Aircrafts Cars
Rel-Loc ✓ 67.33 (-1.22) 73.82 (-2.47) 81.20 (-0.53) 85.80 (-0.56)
Rot-Pred ✓ 67.75 (-0.80) 74.26 (-2.03) 81.58 (-0.15) 85.74 (-0.62)
SimCLR × 68.30 (-0.30) 73.51 (-2.78) 81.18 (-0.55) 85.93 (-0.43)
MoCo.v2 × 68.47 (-0.08) 73.73 (-2.56) 81.78 (+0.05) 86.08 (-0.28)
MoCo.v2 ✓ 67.60 (-1.05) 73.18 (-3.11) 81.04 (-0.69) 85.71 (-0.65)
LooC* ✓ 68.71 (+0.16) 74.45 (-1.84) 81.75 (+0.02) 85.90 (-0.46)
InsLoc ✓ 67.94 (-0.20) 76.36 (+0.07) 81.54 (-0.23) 86.38 (+0.02)
BYOL × 68.55 (+0.00) 76.29 (+0.00) 81.73 (+0.00) 86.36 (+0.00)
BYOL ✓ 68.01 (-0.54) 75.82 (-0.47) 80.53 (-1.20) 85.49 (-0.87)
BYOL+DiLo ✓ 68.70 (+0.15) 76.94 (+0.65) 82.04 (+0.31) 86.46 (+0.10)
BYOL+CVSA ✓ 69.14 (+0.59) 77.57 (+1.28) 82.77 (+1.04) 87.13 (+0.77)

Table 2: Comparison of dual-stage pre-
training on fine-grained benchmarks. Top-
1 accuracy (%) under fine-tuned evaluation
is reported. The first-stage is pre-trained on
COCO, and ✓denotes performing the second-
stage pre-training on fine-grained datasets.

Methods Stage 2 CUB NAbirds Aircrafts Cars
Supervised × 81.02 80.09 87.25 90.61
SimCLR × 73.99 (-2.64) 76.30 (-2.59) 85.96 (-1.23) 88.16 (-1.43)
MoCo.v2 × 73.19 (-3.44) 75.64 (-3.25) 85.49 (-1.70) 87.51 (-2.08)
MoCo.v2 ✓ 71.77 (-4.86) 73.96 (-4.93) 83.25 (-3.94) 86.88 (-2.71)
InsLoc ✓ 75.83 (-0.80) 78.86 (-0.03) 86.60 (-0.59) 88.87 (-0.72)
BYOL × 76.63 (+0.00) 78.89 (+0.00) 87.19 (+0.00) 89.59 (+0.00)
BYOL ✓ 72.46 (-4.17) 76.12 (-2.77) 84.58 (-3.61) 87.08 (-2.51)
BYOL+DiLo ✓ 76.60 (-0.03) 79.04 (+0.15) 87.03 (-0.16) 89.26 (-0.33)
BYOL+CVSA ✓ 77.10 (+0.47) 79.64 (+0.75) 87.27 (+0.12) 89.76 (+0.18)

Table 3: Comparison of dual-stage pre-training
on fine-grained benchmarks. Top-1 accuracy
(%) under fine-tuned evaluation is reported. The
first-stage is pre-trained on IN-1k, and ✓denotes
performing the second-stage pre-training on cor-
responding fine-grained datasets. Supervised de-
notes the supervised pre-training on IN-1k.

Small-scale scenarios. We per-
form 800 epochs pre-training with
ResNet-50 encoder using different pre-
training stage settings on four small-
scale fine-grained datasets and report
the top-1 classification accuracy under
the fine-tune protocol. As shown in
Table 1, when performing the second-
stage only setting, namely pre-training
with the training set of fine-grained
datasets from scratch, our proposed
CVSA outperforms BYOL by a large
margin on all benchmarks. When
applying the dual-stage setting using
COCO for the first-stage, as shown in Table 2, CVSA shows a consistent improvement on
representations learned during the first-stage while most comparing methods yield worse
performance than the first-stage pre-trained BYOL baseline. However, when using Ima-
geNet for the first-stage pre-training, as shown in Table 3, the improvement of CVSA in
the dual-stage setting is not as significant on Aircraft and Cars. We hypothesize that this
is due to the iconic nature of these two datasets. We find that most images of these two
datasets are of similar and straightforward backgrounds, restricting the background varia-
tion imposed by our approach. Besides, comparison of Table 1 with Table 2 and 3 suggests
that the performance gain is affected by the size of dataset used. This is consistent with our
formulation in Appendix A.2 that discriminative feature extraction relies on the size of the
pre-training dataset, and localization ability alone is not enough for fine-grained recognition.
In a word, CVSA and dual-stage pre-training pipeline improve learned representation for the
small-scale fine-grained classification.

Stage 1 Stage 2 Sup. MoCo.v2 BYOL BYOL+DiLo BYOL+CVSA
× iNat2018 5.7 41.8(-2.8) 44.6(+0.0) 44.3(-0.3) 45.4(+0.8)

IN-1k iNat2018 46.5 45.0(-1.9) 46.9(+0.0) 47.0(+0.1) 47.5(+0.6)

Table 4: Comparison of dual-stage pre-training on
iNat2018. Top-1 accuracy (%) under linear evaluation
is reported. Sup. denotes the supervised pre-training on
iNat2018 in the second-stage.

Large-scale scenarios. Next,
we evaluate CVSA on large-
scale benchmark iNat2018 with
the dual-stage pre-training. Fol-
lowing MoCo [17], we adopt the
linear evaluation protocol as men-
tioned in Appendix A.1 training
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Figure 3: Ablation of hyperparameters. Left:
the effect of different scaling factors of SS during
second-stage. Right: the effect of freezing differ-
ent ResNet stages during second-stage. The dotted
grey line indicates the performance of BYOL pre-
trained on COCO during first-stage.

Methods Stage 1 Stage 2 CUB Aircrafts Cars
BYOL IN-1k × 76.6 87.2 89.6
BYOL+CVSA IN-1k × 75.9 86.8 89.2
BYOL+CVSA IN-1k ✓ 76.5 87.3 89.7
BYOL iNat2018 × 77.2 80.4 85.8
BYOL+CVSA iNat2018 ✓ 77.0 81.2 86.5
BYOL COCO × 68.6 81.7 86.4
BYOL+CVSA COCO ✓ 68.9 82.3 86.7

Table 5: Ablation of dual-stage pre-
training. The first-stage is pre-trained
200 epochs on IN-1k and iNat2018 and
400 epochs on COCO. The second-stage
is pre-trained on downstream datasets
(denoted by ✓) or not (denoted by ×).

100 epochs with the basic learning rate lr = 0.025 and batch size of 256. In Table 4, CVSA
outperforms existing methods in both settings indicating its effectiveness in the large-scale
datasets, especially improving the baseline by 0.9% with second-stage-only. Compared with
the results in Table 3, the performance gain is more significant than second-stage pre-training
on small-scale datasets like Aircraft and Cars, which suggests that CVSA benefits from a
larger data size. Meanwhile, using dual-stage pre-training with IN-1k for the first-stage
helps contrastive methods to learn better representations than the second-stage only setting.

3.3 Ablation Study
We perform 400 epochs pre-training with ResNet-18 on CUB for the first three ablation
studies. As for the fourth ablation for the dual-stage pre-training, we perform 200 epoch
first-stage pre-training on large datasets and 400 epochs second-stage pre-training on target
datasets. The top-1 accuracy under the fine-tune evaluation is reported. Appendix B provides
more results.

Module effectiveness ablation. We demonstrate the effectiveness of our CVSA by
adding modules one by one onto the baseline. We compare the performance of MoCo.v2 and
BYOL using SS against RandomResizedCrop (RRC) while keeping all other augmentations
unchanged. As shown in Figure 3 left, SS outperforms RRC (using the default scaling factor
of 0.08) both for MoCo.v2 and BYOL. We observe a further performance improvement from
adding the saliency alignment loss (Align) onto BYOL using SS. Now, we have shown that
both SS and Align contribute to higher performance.

Hyperparameter ablation. We then analyze the performance of SS using different
crop scaling factors, specifically λ ∈ {0.08,0.2,0.3,0.4,0.5,0.8} in Figure 3 left. From
Figure A1 left, the performance of BYOL fluctuates drastically under the different scaling
factors of RRC, with the best result achieved with a scaling factor being 0.08. However,
BYOL yields similar performance under different choices of λ of SS. We argue that SS,
together with Align, helps the model to localize on the foreground object, and thus local
texture is no longer the only clue for contrastive pre-training to learn representation. Then,
we study the effect when freezing various stages of ResNet-18 in the second-stage. We
initialize the model of all methods in the second-stage with the weights of BYOL baseline
pre-trained on COCO in the first-stage. In Figure 3 right, the horizontal axis indicates freez-
ing up to different stages of ResNet-18. The best performance is reached when freezing up
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to the second-stage of ResNet. The early stages of ResNet mostly extract low-level texture
information, while the later stages are for higher-level features such as discrimination and
localization. Intuitively, we wish to enhance the localization ability without jeopardizing the
texture extraction ability acquired during the first-stage. This explains the reason for freezing
the first two stages during the second-stage, which is common in object detection [34].

Background BYOL+DiLo BYOL+SS BYOL+SS+Align
CUB 64.14 (+0.00) 64.35 (+0.00) 65.02 (+0.00)
COCO 60.07 (-4.07) 60.42 (-3.93) 61.23 (-3.79)
NAbirds 62.51 (-1.81) 63.06 (-1.29) 64.80 (-0.22)
CUB+COCO 61.26 (-2.88) 61.49 (-2.86) 62.01 (-3.01)
CUB+NAbirds 64.28(+0.14) 64.23 (-0.12) 65.50(+0.48)

Table 6: Evaluation of background datasets
extension for the second-stage pre-training.
We study the effect of fusing different back-
ground datasets on CUB.

Background dataset ablation. More-
over, we compare different foreground and
background fusion methods (SS and DiLo)
based on CUB dataset using second-stage
only settings. As shown in Table 3.3, re-
placing the background with other datasets
usually results in performance degradation,
while fusing with complex backgrounds
might improve the performance. We hy-
pothesize that exploring task-specific back-
grounds is more critical in fine-grained scenarios. Meanwhile, it indicates that the proposed
CVSA (SS+Align) can well explore the background of CUB.

First-stage pre-training ablation. Additionally, we verify the necessity of the first-
stage learning discrimination on iconic datasets in the dual-stage pre-training scheme. We
compare naive BYOL and CVSA for the first-stage pre-training on IN-1k, iNat2018, and
COCO. As shown in Table 5, using IN-1k (iconic) for the first-stage yields better perfor-
mance that scenic datasets, indicating the necessity of the first-stage on iconic datasets. Since
CVSA is design for the second-stage on target datasets, we find that using CVSA on second-
stage outperforms naive BYOL while producing degraded performance on the first-stage.
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Figure 4: Grad-CAM visualization of BYOL and
BYOL+CVSA on CUB200.

Visualization of localization
abilities. Lastly, we compare
the localization abilities by Grad-
CAM [35] visualization of SS
(BYOL+CVSA) and RRC (BYOL).
Figure 4 (a) and (b) shows that
SS enables the model to bet-
ter localize the fine-grained tar-
get than RRC. Comparing to Fig-
ure 4 (a)(b), Figure 4 (c) shows
that dual-stage training further im-
proves localization than the first-
or second-stage only.

4 Related Work
Self-supervised methods have largely reduced the performance gap between supervised mod-
els on various downstream vision tasks. Most early methods design hand-crafted pretext
tasks [10, 13, 56]. For example, Gidaris et al. [13] proposed learning image features by
training the network to predict different rotation angles of the same image. Doerschet al. [10]
proposed learning image features by training the network to predict the correct order of ran-
dom cut image patches. These pretext tasks rely on somewhat ad-hoc heuristics, which limits
the generality of learned representations.
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Recently, contrastive learning [3, 4, 5, 17, 23, 51, 52] achieved state-of-the-art perfor-
mance, which learns instance-level discriminative representations by contrasting positive
pairs against negative pairs. In particular, MoCo [17] adopts a memory bank to store neg-
ative samples while embedding different views of the same image using an online encoder
and a momentum encoder. SimCLR [4] yields comparable results using the sufficiently
large batch size in replacement of the memory bank. Getting rid of the notion of negative
pairs, BYOL [15] pulls together positive pairs generated by online and momentum encoders
with the help of a predictor and the stop gradient mechanism. Another popular form of
self-supervised learning is clustering-based methods [2, 3, 54]. Without computing pairwise
comparisons, SwAV [3] maps image features to a set of learnable prototype vectors. Vari-
ous mechanisms are proposed to learn useful representations rather than trivial solutions in
contrastive methods such as a constant representation.

More recently, some research endeavors have been made on top of contrastive methods
to enhance pre-training quality for specific downstream tasks, such as object detection and
segmentation [25, 26, 45, 47, 48]. Most methods adopts detection or segmentation compo-
nents to learn pixel-level contrastive representation [8, 11, 37, 49]. DSC [25] proposed to
model pixel-level semantic structures within images by taking into consideration the seman-
tic relations of both intra- and inter-image pixels. Self-EMD [26] learns representations by
measuring the similarity among all location pairs using the earth mover’s distance (EMD).
LooC [39] proposed to construct separate embedding sub-spaces for each augmentation in-
stead of a single embedding space. DiLo [57] proposed a copy-paste [12, 33] based aug-
mentation approach that randomly pastes masked foreground onto a variety of backgrounds.
CASTing [37] crops views based on a ratio threshold of the area of saliency regions (re-
quired mask-level supervision) to the area of the cropped patch. However, existing methods
are trained on general-purpose coarse-grained datasets while neglecting fine-grained scenar-
ios where low-level background texture features provide little clue to the category informa-
tion of the foreground subject. To address this issue, we propose a dual-stage pre-training
pipeline that utilizes coarse- and fine-grained datasets for better fine-grained representation
learning. Appendix C provides a discussion of the relationship between our proposed CVSA
and previous methods.

Current efforts [9, 20, 38, 46, 58, 59] in fine-grained recognition are primarily dedicated
to fine-tuning model pre-trained on supervised ImageNet either by localizing distinct parts or
by learning fine-grained features. However, there exists little exploration in self-supervised
pre-training for fine-grained categorization. In the paper, we attempt to bring localization
and fine-grained feature representation learning to the pre-training stage, using fine-grained
datasets. To address this issue, we propose a dual-stage pre-training pipeline that utilizes
coarse- and fine-grained datasets for better fine-grained representation learning.

5 Conclusion
In this paper, we find that learning to extract discriminative texture information and localiza-
tion are equally crucial for fine-grained self-supervised pre-training with empirical analysis.
We proposed a dual-stage pre-training pipeline with the first-stage to train feature extraction
and the second-stage to train localization. To empower the model with localization abilities
in the second-stage, we propose cross-view saliency alignment (CVSA), a new unsupervised
contrastive learning framework. Extensive experiments on fine-grained benchmarks demon-
strate the effectiveness of our contributions in learning better fine-grained representations.
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