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A Fine-grained Pre-training Essentials

We evaluate the capabilities learned out of three classes of pre-training mechanisms, namely
self-supervised contrastive, non-contrastive, and supervised methods. In particular, we focus
on discriminative feature extraction and object localization ability. Without loss of gener-
ality, we select MoCo.v2, BYOL, Rot-Pred, and supervised classification for comparison.
To explore the effects of object localization, we develop a simple binary classification as a
pre-training task where the model is asked to classify images from CUB as foreground class
and images from COCO as background class. (rather than design detection specific modules
as InsLoc [48]).

A.1 Experimental Setup

Dataset. We evaluate the performance of baselines’ representation pre-trained on the train-
ing set of 100% ImageNet-1k (IN-1k), 10% IN-1k, COCO, and CUB, details of datasets used
are described in Sec. 3. We use the same fixed split for the 10% IN-1k where we randomly
sample 10% of the total training set size from each class.

Pre-training details. To ensure impartial comparisons, MoCo.v2 data augmentations are
adopted for all self-supervised methods and follow the exact setup described in the original
papers. OpenMixup [23] is adopted as the codebase. All models are pre-trained 200 epochs
on 100% IN-1k and 800 epochs on other datasets. For the binary classification, the model is
pre-trained by SGD optimizer with an initial learning rate of 0.1 adjusted by a cosine anneal-
ing scheduler, the SGD momentum of 0.9, and the weight decay of 0.0001. In contrastive
learning pre-training, the input resolution is 224 x 224 and the data augmentation strategy
follows MoCo.v2 [5] as following: Geometric augmentation is RandomResizedCrop with
the scale in [0.2,1.0] and RandomHorizontalFlip. Color augmentation is ColorJitter with
{brightness, contrast, saturation, hue} strength of {0.4,0.4,0.4,0.1} and an applying proba-
bility of 0.8, and RandomGrayscale with an applying probability of 0.2. Blurring augmen-
tation is using a square Gaussian kernel of size 23 x 23 with a standard deviation uniformly
sampled in [0.1,2.0]. During the evaluation, images are resized to 256 pixels along the
shorter side and are center cropped to 224 x 224.

Evaluations. We evaluate the learned representation with a linear evaluation protocol, and
a fully supervised fine-tune evaluation protocol. The linear evaluation protocol is a com-
monly adopted protocol detailed in [4][17], i.e., train a linear classifier on top of the frozen
representation on the labeled training set. We use SGD optimizer with a cosine annealing
scheduler, the SGD momentum of 0.9, and the weight decay of 0. Based on supervised
fine-grained classification settings, we adopt the batch size of 16 with 50 training epochs for
small-scale fine-grained datasets, while using the batch size of 32 with 80 training epochs
for iNat2018. To avoid evaluation deviations caused by the learning rate, we report the best
test performance achieved among the initial learning rate in {0.1,0.01,0.001} for each com-
paring method. The fully supervised fine-tune evaluation protocol, as proposed in [4, 52],
fine-tunes the entire network on the training set with labels. Since the original protocols
are designed for coarse-grained datasets such as IN-1k, we adopt fine-grained training set-
tings: we use SGD optimizer with a cosine annealing scheduler and a batch size of 16 train-
ing 50 epochs. To avoid evaluation deviations, we sweep over the initial learning rate in
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100% IN-1k 10% IN-1k COCO CUB
Methods | Finetune Linear MaxBoxAcc |Finetune Linear MaxBoxAcc |Finetune Linear MaxBoxAcc |Finetune Linear MaxBoxAcc
Supervised | 79.25  67.64 52.18 74.68  63.07 51.42 65.41 61.39 49.87 67.82  49.85 37.31
Rot-Pred 67.66 2529 46.14 68.81 23.71 4722 6795 16.54 43.39 66.67 15.46 34.69
MoCo.v2 73.19 33.34 47.73 69.62 25.32 48.23 68.47 18.69 46.74 63.21 15.03 33.36
BYOL 76.63 29.17 49.23 7042 2038 46.52 68.55 16.36 45.60 64.85 15.24 33.81

Table Al: Comparison of pre-training methods. Top-1 fine-tune and linear accuracy and
MaxBocAcc (%) are reported.

{0.1,0.05,0.01,0.005,0.001} and the weight decay in {0.0005,0.0001}, and select the hy-
perparameters achieving the best performance on the validation set. The linear test accuracy
of the pre-trained model is referred to as the model’s discriminative feature extraction abil-
ity [14]. We refer to the fine-tune evaluation as a pre-training representation quality metric
for fine-grained classification problems in a practical sense. For each method, we report
mean top-1 accuracy on the test set over 3 trials. To evaluate the localization ability of dif-
ferent approaches, we use a class activation mapping (CAM) based metric MaxBoxAcc [6].
A larger MaxBoxAcc indicates better localization ability.

A.2 Essential Requirement and Formulation

Where does the gap lie between self-supervised and supervised pre-training? As shown
in Table A1, when pre-trained on 100% IN-1k and 10% IN-1k, the supervised method con-
sistently outperforms all self-supervised pre-training methods. Compared to supervised pre-
training, all self-supervised approaches yield lower MaxBoxAcc, indicating a lack of local-
ization ability. Self-supervised methods are task-agnostic and could only learn low-level
features, i.e., gradient and direction-dependent features for rotation, and invariant features
across views to cluster different objects for contrastive methods. However, the supervised
method discards task-irrelevant information and extracts related semantic features. Deep
CNN, such as ResNet, has its natural ability in localization during the supervised pre-training
process. However, such localization ability could hardly be acquired during self-supervised
pre-training. Also, notice that supervised pre-training on CUB yields much lower linear and
fine-tune accuracy than self-supervised methods, which states that discriminative feature ex-
traction is largely affected by the size of the dataset.
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random location is cut from the
original image and then resized to
the original size. We verify the
hypothesis on STL-10 [7] (a sub-
set of IN-1k) based on BYOL and
MoCo.v2 using their training set-
tings on IN-1k. Figure Al left
shows that performances of both
methods drop drastically as the

Figure Al: Left: Performance analysis of Random-
ResizedCrop (RRC) on STL-10 based on BYOL and
MoCo.v2. The x axis indicates the scale factor for
RRC and the Top-1 accuracy (%) of fine-tune evalu-
ation is reported. Right: Performance analysis of the
binary classification task with various mixup methods.
The Top-1 accuracy (%) of fine-tune evaluation and
MaxBoxAcc are reported.
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cropped patch scale enlarges. The best accuracy is achieved with a scaling factor of 0.08,
which is the default hyperparameter choice for current contrastive-based approaches. When
asked to pull together two overly small patches cut from the same image, the model is forced
to exploit low-level local texture features leading to poor localization ability. Different from
contrastive-based methods, Rot-Pred takes in whole images rotated by four degrees as in-
put. The authors claim that the model is required to understand the location and pose of the
objects depicted in the image in order to predict the rotation angle. As can be seen from
Table Al, Rot-Pred indeed yields better localization ability and overall performance than
contrastive-based algorithms on CUB.

Then, we formulate current contrastive
methods with a causal graph as illustrated
in Figure A2 and will later use this concept
to formalize our pre-training scheme. Let X
be images with the content C composed of
background prior B and foreground target
prior T, generated with style prior S as aug-
mentations like color jittering. Latent repre- Figure A2: Causal interpretation of existing
sentation Z is learned and used to infer im- contrastive methods (left) vs. CVSA (right)
age labels Y. Contrastive methods assume from a causal perspective. The direct link de-
image labels Y are an effect of whole image notes the causality from the cause to the effect.
content C (both B and T') due to the local texture-biased nature. In this work, we propose to
weaken the causality between B and Y to make Y a more direct effect of 7.

Content . ___Content

Is localization all you need? We report linear and fine-tune test accuracy and MaxBoxAcc
of the binary classification on the CUB test set pre-training with various mixup augmenta-
tions [26, 39, 49, 54] as well as image augmentations in Figure A1 right. From Table Al and
Figure Al, it is observed that the fine-tuned model using binary classification as pre-training
yields comparable MaxBoxAcc as supervised pre-training, which indicates that a simple bi-
nary classification supervision signal empowers the network with localization ability. Yet,
there still exists a vast fine-tuned accuracy gap compared to supervised pre-training on IN-
1k. We assume that the gap mainly comes from an inferior feature extraction ability of the
binary classification pre-training, as could be conducted from a much lower linear test accu-
racy. In other words, for better fine-grained recognition pre-training, discriminative feature
extraction ability is as essential as localization ability.

Next, we investigate how different mixup augmentations affect the model’s localization
ability. We notice a simple interpolation between images as done by Mixup negatively im-
pacts the model’s localization ability. This negative impact is largely due to the unnatural
characteristics of the mixed images. Cutmix mixes samples by replacing the image region
with a patch from another training image, while SaliencyMix replaces the image region with
the saliency region from another training image. We observe that both CutMix and Salien-
cyMix bring about better localization ability. However, directly applying these mixup-based
augmentations to contrastive learning leads to degenerate solutions. Contrastive learning
essentially expects positive pairs to share common semantic objects while keeping negative
pairs as much dissimilar as possible. Due to the randomness introduced by such mixup
algorithms, augmented images may contain multiple semantic objects or contain no seman-
tic object at all. Without proper supervision, this easily causes the learned representation
space to collapse during self-supervised contrastive pre-training. We address this problem
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by proposing an image augmentation technique that swaps saliency regions of images which
aims to introduce solely background variation.

Formulation. From the previous analysis, given a fine-grained classification problem, sim-
ilar to [1], we assume X to be a set of all samples with an underlying set of discrete latent
classes C that represent semantic content, we obtain the joint distribution between each sam-
ple x and its class c:

p(c,x) = p(c|xf()re) 'p(xfore |)C), ®)

where x o, stands for the foreground object. This factorization captures two important intu-
itions: (1) Given an image of a fine-grained object; the model should first localize the fore-
ground object (p(xfore|x)), namely, the localization ability of the model. (2) To further tell
the species of the foreground object (p(c|xfore)), discriminative texture features should be
extracted, namely, the texture extraction ability of the model. Following this formulation, a
dual-stage pre-training pipeline is naturally proposed for self-supervised fine-grained recog-
nition. In particular, we refer to previous contrastive learning methods such as MoCo.v2
and BYOL on large datasets such as ImageNet or COCO as the first-stage and the proposed
CVSA as the second-stage. The model’s discriminative texture extraction ability could be
fulfilled by first-stage pre-training. In the first-stage, we regard the image content as a whole
as the same assumption of current contrastive methods. For the second-stage pre-training, we
propose a framework called cross-view saliency alignment (CVSA) to enhance the model’s
localization capability.

B More Ablation Experiments

We further study the impact of using saliency information provided by different saliency de-
tection methods based on experiment settings in Sec. 3.3. We compare five well-recognized
saliency detection methods (VSFs [29], GS [43], FST [42], RBD [59] and BSANet [31]) and
the ground truth bounding box on CUB. As shown in Table B, the proposed SaliencySwap
and alignment loss are robust to the quality of saliency bounding boxes because our approach
helps the network to localize the object roughly and extract fine-grained semantic features.
It is no need to provide accurate segmentation masks of the foreground objects as in object
detection and segmentation [11, 35].

Method VSFs GS FST RBD BSANet Groundtruth
BYOL+SS 6427 6432 6428 64.34 64.33 64.35
BYOL+SS+Align  64.89 64.94 6493 6497 65.04 65.02

Table A2: Evaluation of different saliency detection methods for second-stage only pre-
training. Top-1 accuracy (%) under fine-tune evaluation is reported on CUB.

Settings V100 BYOL BYOL+DiLo BYOL+CVSA
CUB-200| 400ep 1x [6.0h 30.3M 72.5|+0.5h 45.7M +0.5h 45.1M
NAbirds | 400ep 4x |7.5h 30.3M 76.1|+2.0h 45.7M +1.5h 45.1M

Table A3: Comparison of computational overhead. The total training time (hours), the
number of parameters (M), and the performance of the dual-stage setting are reported.

We then compare the computation overhead and the performance gain in Table A3,
demonstrating that the proposed CVSA significantly improves BYOL with limited extra
computational overhead.
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C Discussion

For fine-grained classification, our proposed CVSA aims to balance the abilities of target lo-
calization and discriminative feature extraction. As for contrastive-based methods designed
for downstream tasks like object detection and segmentation, most frameworks perform ob-
ject localization and classification in two network branches, focusing on improving local-
ization ability. Compared to SaliencyMix [39] and DiLo [56], DiLo randomly places the
masked foreground objects to raw background images such as texture backgrounds, while
our proposed SaliencySwap swaps the saliency region in the randomly selected background
image and the source image and regards the augmented view as a positive sample, as shown
in Figure 1. Notice that SS and SaliencyMix only require coarse saliency information
described by bounding boxes, while DiLo uses pixel-wise saliency masks. Compared to
CASTing [35], it improves object localization by cropping views based on saliency regions
(required mask-level supervision) and maximizing the similarity between learned saliency
masks. However, for fine-grained classification, both discriminative feature extraction and
target localization are crucial (performed in the same branch). Our alignment loss utilizes
saliency maps of two images and aligns them with cross attention of the two views.



