
LEE, LEE, LEE: LEARNING TO WEAR 1

Learning to Wear: Details-Preserved Virtual
Try-on via Disentangling Clothes and Wearer

Sangho Lee1

sangho.lee@snu.ac.kr

Seoyoung Lee1

seoyoung1215@snu.ac.kr

Joonseok Lee∗1,2

joonseok@snu.ac.kr

1 Graduate School of Data Science
Seoul National Univ.
Seoul, Korea

2 Google Research
Mountain View, CA, USA

Abstract

Virtual try-on, fitting an image of a garment to an image of a person, has rapidly
progressed recently. However, existing virtual try-on methods still struggle to faithfully
represent various details of the clothes when worn. In this paper, we propose a simple
yet effective method to better preserve details of the clothing and person by introducing
an additional fitting step after geometric warping. This minimal modification helps to
effectively learn disentangled representations of the clothing from the wearer. By dis-
entangling these two major components for virtual try-on, we are able to preserve the
wearer-agnostic structure and details of the clothing, and thus can fit a garment naturally
to a variety of poses and body shapes. Moreover, we propose a novel evaluation frame-
work applicable to any metric, to better reflect the semantics of clothes fitting. From
extensive experiments, we empirically verify that the proposed method not only learns
to disentangle clothing from the wearer, but also preserves details of the clothing on the
try-on results.

Figure 1: Our proposed method better preserves the details of the reference person and the
target clothes, without mixing the cue of original clothes in the reference.
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Figure 2: Examples of incorrect drawing of the target clothes by existing methods. Images
in (a, b, c) are brought from Fig. 5, 10 in ACGPN [40], and (d) from Fig. 6 in PF-AFN [8].

1 Introduction
The objective of the virtual try-on task is to fit an image of a garment to an image of a person
wearing another garment. Most existing methods, such as VITON [10], CP-VTON+ [26],
ACGPN [40] and PF-AFN [8], approach virtual-try-on as an image inpainting problem.
Specifically, these models attempt to fit in an image of a new garment onto the torso re-
gion of a person wearing another set of clothing. The models generally involve two major
steps: 1) a Geometric Warping Module (GMM) to learn how clothes should be geometrically
warped to fit in the pose and body shape of the target person, and 2) a Try-on Module (TOM)
to blend the warped clothing with the target person image.

Although previous methods can output images that look natural, we observe that they
often fail to reflect how the input clothes should be worn naturally considering all the fine de-
tails of clothed garments, without fully understanding the semantics of wearing them. Fig. 2
shows four examples from current state-of-the-art models, ACGPN [40] and PF-AFN [8]. We
observe that some parts that are invisible when worn (e.g., inner side of the shirt neckline) are
still shown in (b, d), while some other parts that should be represented in the outputs (e.g.,
spaghetti straps in (a), high neck in (c)) are not retained. Other models [26, 38] also show
similar limitations of misrepresenting important details of the target clothes, often struggling
to generate a well-fitted image. This implies that previous models might simply be fitting the
target garment on top of the target person’s torso, without fully understanding how the gar-
ment is actually worn tridimensionally. In other words, learned features of the clothing and
the wearer are not fully disentangled, and thus those models frequently fail to adequately se-
lect and preserve details of the target clothes, especially when they are significantly different
from the source clothes.

An ideal virtual try-on model should be able to separate signals from each independent
factor involved in try-on by fully understanding their semantics and transformations, so that
it can generate an image that preserves details of wearing behavior. To address this problem,
we propose a simple but effective way to disentangle the learning of clothes from that of
the wearer. Specifically, we propose DP-VTON, a three-step model where an additional step
called the Clothes Fitting Module (CFM) is inserted between the GMM and TOM, aimed
at learning how the clothes should be naturally worn completely independent of the input
reference image. As opposed to previous models where the reference image (wearing the
source clothes) is directly referred to perform warping, CFM fills the target clothes within
the mask of the already warped target clothes, learning how they should appear when worn
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by the given person. As long as the backbone model follows the common two-step approach
of warping and try-on, the CFM can be easily incorporated to fit the warped clothes image
after the first step with minimal extra overhead to seamlessly connect the GMM and TOM
while significantly improving the results.

Our contributions can be summarized as follows. First, we propose a three-step model
called DP-VTON with a novel ‘Clothes Fitting Module (CFM)’, which imitates the human
behavior of wearing clothes. By clearly separating the geometric warping and inpainting of
clothes before blending with the person, the proposed method successfully disentangles rep-
resentation of the clothes and that of the wearer in the reference image. Second, we propose
a novel way of applying evaluation metrics more suitable for the virtual try-on task, focusing
on a few critical body points instead of equally weighting all pixels. Lastly, we empirically
verify that the proposed approach produces try-on images of higher quality, outperforming
several recent state-of-the-art methods both qualitatively and quantitatively.

2 Related Work
Image synthesis. Generative Adversarial Networks (GANs) have steered the progress in the
fields of image synthesis and manipulation [12, 15, 17, 18]. To generate data with certain
properties, additional information (text [31], class labels [28], or attributes [35]) has been
incorporated to condition the generation procedure. ClothNet [20] generated a person in-
painted with different clothing styles, by learning to condition on the pose, shape, and color.
Convolutional neural networks (CNNs) [19, 21, 37] also have been widely utilized in im-
age synthesis. U-net [33], originally developed for image segmentation, has been applied to
image synthesis for high performance, e.g., Generative Adversarial U-Net [1].
Virtual Try-on. Research on virtual try-on is rooted in studies on fashion editing [11, 22,
25, 36, 43]. Deep-learning-based virtual try-on models are roughly classified into 3D-based
models [9, 29, 32, 34] and 2D models [4, 10, 14, 38]. 3D-based models tend to result in
higher accuracy in the simulated clothes, while they require additional 3D measurements
and more computing resources, making 2D-based methods to be more broadly adopted. 2D
models can be further categorized into whether they emphasize the use of pose and person
representations (e.g., [7, 10, 24, 26, 38]) or segmentation maps (e.g., [6, 8, 13, 40, 41]). Mod-
els generally follow two sequential stages proposed by CP-VTON [38], where clothes are
first geometrically warped, then dressed to the target person. CP-VTON+ [26] improved the
geometric warping process with regularization to prevent extreme distortion of the clothes.
A few recent models [23, 25, 27] have attempted to refine these models to learn disentangled
representations for the target clothes and reference person. However, due to the limitation
in paired datasets of in-shop clothes and human models, these models were unable to learn
fully disentangled representations. Moreover, recent works have expanded virtual try-on re-
search into generating high-resolution images [2, 5], dressing multiple garments sequentially
[3, 27, 30], and transferring garments between two people [23, 25, 27].

3 Preliminary

Problem Formulation. Virtual try-on task takes two inputs, an image c ∈Rh′×w′×3 of an in-
shop clothes and a reference image I ∈Rh×w×3 of the target person, wearing another garment
called source clothes. (Note that it is not necessarily h = h′ and w = w′, respectively.) The
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Figure 3: Our model (blue box), compared with CP-VTON [38] and CP-VTON+ [26].

goal of this task is generating an image It ∈ Rh×w×3, where the person in I wears the target
clothes in c. Qualitatively, an ideal virtual try-on model should output a natural photo-like
image, preserving the identity of the target person (e.g., appearance, body shape, and pose),
properties of the target clothes (e.g., shape and texture), and interactions between them (e.g.,
how specific parts of clothes or body should appear when clothed).

A training example of index i consists of a pair of images (c(i), I(i)), and the model
produces Î(i)t . We need the ground truth I(i)t in a supervised setting, but in practice, it is tricky
to have a pair of pictures of a model wearing two different garments with exactly the same
pose. Thus, existing virtual try-on models have used I(i) wearing the same clothes in c(i), and
we follow the same approach in this paper. At inference, a query (c(i), I(i)) usually contains
two different garments in c(i) and I(i), where c(i) is the target clothes and I(i) shows a person
wearing the source clothes, different from c(i).

CP-VTONs. Our work is inspired by the evolutionary achievements of VITON methods.
Advancing from VITON [10], CP-VTON [38] proposed a two-stage approach, first warping
the clothes using the Geometric Matching Module (GMM) and then dressing them to the
target person using the Try-on Module (TOM).

Fig. 3 overviews the GMM proposed by CP-VTON. The reference image I ∈ Rh×w×3 is
first pre-processed to a head image H ∈Rh×w×3, the person mask M ∈ {0,1}h×w, and a pose
map P ∈ Rh×w×18, where each layer of the pose map is a one-hot encoding indicating each
pre-defined key point, e.g., shoulder, elbow, etc. These preprocessed features are stacked
to the person representation p ∈ Rh×w×22. The GMM geometrically transforms the target
clothes c to a warped clothes ĉ such that it is roughly aligned with the person in I, via a Thin-
Plate Spline (TPS) transformation module T that warps c into ĉ = Tθ (c). (See CP-VTON
[38] for more details.) GMM can be trained end-to-end by comparing the warped clothes (ĉ)
and the actual clothes on person (ct ). CP-VTON uses the pixel-wise L1 loss between them;
that is, LGMM = ∥ĉ−ct∥1. CP-VTON+ [26] improves CP-VTON by comparing the mask of
the warped clothes (ĉm) and the clothes mask of the reference image (ctm) instead of the RGB
images (ĉ and ct ), as shown in the yellow box of Fig. 3, and by applying regularization on
the TPS parameters. After geometric warping, the TOM takes as input the warped clothes ĉ,
which is roughly aligned with the body shape and the pose of the target person, to synthesize
the final result by fusing ĉ with the target person.
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4 The Proposed Method: DP-VTON
Ideally, the roughly warped clothes ĉ by GMM should be synthesized with the person, keep-
ing the wearer’s attributes (e.g., identity, body shape, and pose) only, independent of the gar-
ments she was wearing. However, we observe from Fig. 2 that the previous methods often
retain some characteristics of the source clothes, worn by the person in I. This undesirable
phenomenon indicates that the characteristics of the person and those of source clothes are
not completely disentangled. Our hypothesis is that this is because of the training scheme,
where we use the same clothes in I and in c, due to the reason mentioned in Sec. 3.

What is happening when we train the GMM? Simply speaking, GMM learns to map the
frontal view of clothes c to their distorted shape according to the person’s body and pose in
the reference image I, assuming the clothes will be worn by the person. CP-VTON and CP-
VTON+ assume that this is mainly geometric conversion, but in fact, this conversion includes
more than that. For instance, some area in the frontal view actually belongs to the backside
of the clothes (e.g., above the neckline, as in Fig. 2(b, d)), so this area should not appear
in the warped image. Since the GMM is designed to solely learn geometric transformation,
however, the warped clothes image ĉ often fails to preserve these kinds of fine details required
when wearing clothes, and sometimes even the general characteristics of the target clothes.

To resolve this issue, we introduce DP-VTON, where the Clothes Fitting Module (CFM)
is inserted between the GMM and TOM. As illustrated in the blue box of Fig. 3, we use
another network that learns to fit, instead of directly using the imperfectly warped clothes ĉ
in the TOM. CFM takes the warped clothes mask ĉm and the initial target clothes image c
as input, and learns to do two things: 1) estimate the mask of the target clothes ĉtm, and 2)
generate the clothes image ĉt , both when they are actually worn by the target person.

At a glance, this might look redundant, since the GMM is supposed to produce this
directly from c. However, from the existing models, we realize that the GMM is not sufficient
to model the natural details of the clothes when they are worn. As the input ĉm provides the
geometrically transformed mask this time, however, the CFM concentrates purely on “how
to wear”. In other words, the CFM is now completely independent of the source clothes in I,
using the mask of the warped clothes ĉm rather than the reference image I directly.

Specifically, we first get the warped clothes mask ĉm ∈ {0,1}h×w by applying the same
learned θ to the mask of c, which is provided in the training data, instead of ĉ. The CFM
consists of an encoder-decoder structure (we use a U-Net [33], but other encoder-decoder
networks can be used as well), mapping the warped clothes mask ĉm and the in-shop clothes
image c to the fitted clothes image ĉt ∈Rh×w×3 and its mask ĉtm ∈ {0,1}h×w. The generated
ĉt is trained to be close to the ground truth clothes image on the target person (ct ), and the
fitted mask ĉtm is trained to preserve the geometric warping in ĉm. We apply L1 loss for both,
and additionally we apply the VGG perceptual loss LVGG [16] between ĉt and ct . Overall,
our loss function is composed of three terms, with λmask, λL1, and λVGG to control the relative
importance of each term:

Lours = λmask · ∥ĉtm − ĉm∥1 +λL1 · ∥ĉt − ct∥1 +λVGG ·LVGG(ĉt ,ct). (1)

Discussion. How does the CFM help to disentangle the source clothes from the person? In
the existing models without CFM, the GMM is fully in charge of generating the warped
clothes. The GMM, however, is in-nature imperfect, in that it maps a 2D image to another
2D image, projecting 3D clothes from different angles. As the input c is already reduced to
a 2D image, it is challenging for the GMM to estimate the 3D structure of the clothes. It

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016



6 LEE, LEE, LEE: LEARNING TO WEAR

does some level of inference on 3D structure, but since it refers to the source clothes mask
of I, information about the source clothes is not completely ignored. This might look okay
at training since each training example is a pair with the same clothes, but this entanglement
results in lower quality of images at inference, which uses different clothes images on I
and c. With the CFM, however, the GMM is now only in charge of learning the geometric
warping to generate a roughly warped clothes mask ĉm. That is, the CFM no longer directly
uses the incompletely warped clothes ĉ made by the GMM, but rather generates the clothes
on a person ĉt , relying only on the binary mask ĉm of the warped clothes attained from ĉ,
completely independent of the 2D RGB input reference image I. By explicitly separating
the learning process of geometric transformation and inpainting of the clothes, our approach
disentangles information from the source clothes more robustly.

In other words, the GMM in our model learns only about the person (pose and body
shape) from I, by using I only as a source for the person’s identifiable traits. By ignoring
the warped clothes image ĉ produced by the GMM but keeping only its mask ĉm, our method
drops undesirable information coming from the source clothes. The CFM, on the other hand,
uses I only as the ground truth image. As the body shape and pose is provided with ĉm,
it concentrates only on inpainting c within the mask, guided by ct extracted from I as the
ground truth. After learning the geometric warping of the clothes in GMM and RGB visu-
alization of the warped clothes in CFM, our model continues to its third step of TOM to
integrate the output from CFM with the target person.

The GMM was initially proposed by CP-VTON to learn the geometric gap between the
clothes in c and I. As the person in I already wears the target clothes in c at training, however,
what the GMM actually learns is a combination of how the clothes look when a person wears
them as well as the geometric difference between c and I. Without the CFM, CP-VTONs use
the reference image I as both the source and ground truth at the same time, thereby confusing
the model to entangle information from source and target clothes (again, which are the same
at training). We conduct extensive experiments in Sec. 5 to verify this claim.

5 Experiments

Dataset. We conduct experiments on the VITON dataset [10], containing 14,221 samples for
training and 2,032 for testing. Each sample is a pair of a frontal image of a top clothing (c)
and an image of a front-view person wearing the clothes (I). Image resolution is 256×192
both for c and I. For quantitative evaluation, we use the same clothes for the clothes image
(c) and the reference image (I), similarly to the training, as it requires ground truth.

Baselines. We compare our proposed method against three state-of-the-art baselines, includ-
ing CP-VTON+ [26], ACGPN [40], and PF-AFN [8]. We expect the proposed approach to
improve VITON-HD [2], another state-of-the-art virtual try-on with high-resolution images,
but we do not compare against this model as its training dataset is not publicly available.
Applying the proposed idea to high-resolution images will be a promising future work.

Quantitative Metrics. We use Structural SIMilarity (SSIM) [39], Learned Perceptual Im-
age Patch Similarity (LPIPS) [42], and pixel-wise Mean-Squared Error (MSE) to measure
the similarity (or distance) between generated images and ground truth. LPIPS measures
a semantic distance between two images based on embeddings extracted from a pre-trained
network (we use VGG [37]). LPIPS scores based on AlexNet [19] show a similar pattern,
available in the Supplementary Materials.
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SSIM (↑) LPIPS (↓) MSE (↓)
ε = 10 ε = 20 ε = 40 ε = 60 ε = ∞ ε = 40 ε = 50 ε = 60 ε = ∞ ε = 10 ε = 20 ε = 40 ε = 60 ε = ∞

CP-VTON+ 0.805 0.531 0.549 0.577 0.368 0.231 0.230 0.230 0.082 7.0 27.6 103.5 214.3 1874.4
ACGPN 0.361 0.231 0.249 0.279 0.387 0.485 0.478 0.475 0.066 53.4 211.7 819.9 1767.1 18703.5
PF-AFN 0.811 0.582 0.599 0.627 0.511 0.202 0.200 0.199 0.077 9.3 36.8 136.4 275.6 2192.5
DP-VTON 0.847 0.589 0.604 0.628 0.392 0.197 0.198 0.197 0.075 4.6 18.7 71.6 149.8 1394.9

Table 1: Quantitative comparisons to state-of-the-art models.

However, we claim that these metrics cannot adequately measure the quality of how
clothes are well-fitted on a person, if applied as is. Unlike general image synthesis, where
each pixel is equally important, it is particularly more crucial to naturally fit the clothes to
each body part in virtual try-on. Existing metrics, however, only consider how the generated
images are similar to the original ones at pixel or feature level in overall. For this reason,
we propose a novel way of applying these metrics to be more suitable for the virtual try-on
task. Specifically, we propose to measure the quality of the generated images only around k
important body parts (namely, key points) of size ε×ε using an existing metric and averaging
them to judge how well the clothes are fitted. Formally, we define a patch-based Metric
with patch size ε , denoted by Metricp

ε , as follows:

Metricp
ε (I) =

1
k

k

∑
i=1

Metric
(

I
[
xi −

ε

2
: xi +

ε

2
,yi −

ε

2
: yi +

ε

2

])
, (2)

Figure 4: Key points used in
patch-based Metrics.

where I is an image to be evaluated, (xi,yi) is the i-th key
point, k is the number of pre-defined key points, ε is the
number of pixels to be included in each axis around the
key point. Metric can be any existing metric above. The
traditional way of using the entire image is a special case,
where ε = ∞.

We choose as key points 7 important joints (the neck,
both sides of the shoulders, elbows, and wrists) illustrated
in Fig. 4. This specific setting may be flexibly adjusted for
a different task, e.g., including knees, ankles, or feet for
a full-body virtual try-on. We use ε = {10,20,40,60} for
SSIM and MSE, while we drop ε = 10 for LPIPS since a
10×10 image patch is not sufficiently large to perform inference on VGG or AlexNet.

Implementation Details. Our GMM and TOM are built on top of CP-VTON+ [26]. For
training GMM, a similar setting in the original paper is used, i.e., λL1, λVGG, λmask = 1 and
λreg = 0.5. We use U-Net [33] for CFM, whose full architecture is available in the Supple-
mentary Materials. We use Adam optimizer with β1 = 0.5 and λVGG = 0.999. We train the
model for 200K steps, with a constant learning rate of 0.0001 for the first 100K steps and
linearly decay the rate to zero for the remaining 100K steps.

5.1 Quantitative Comparisons
Overall Performance. Tab. 1 compares the scores of SSIM, LPIPS, and MSE of CP-
VTON+, ACGPN, PF-AFN, and our method with various window sizes (ε) around the key
points. Under the traditional metrics taken over the entire output image (ε =∞), the proposed
method outperforms baselines only in MSE, while PF-AFN and ACGPN perform better in
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CFM inputs SSIMp
20(↑) LPIPSp

20(↓) MSEp
20(↓)

Warped clothes mask (ĉm) 0.589 0.198 18.7
Warped clothes (ĉ) 0.414 0.275 45.3
Both warped clothes (ĉ) and warped clothes mask (ĉm) 0.449 0.244 36.7

Table 2: Comparison on various CFM input configurations.

Figure 5: Pixelwise difference with ground truth.

SSIM and LPIPS, respectively. However, when we consider only around the key points,
representing the major joints in the torso area, DP-VTON outperforms all other baselines in
all three metrics, with all εs we tried. Putting these two facts together, we can conclude that
the proposed method generates semantically and graphically more plausible try-on images
near the key points that are critical to human perception (recall Fig. 4), while the baselines
get better scores thanks to better matches to the ground truth outside of these critical regions,
such as the background or lower garment, which is not the main target of virtual try-on.

To further demonstrate why evaluating the selected areas is important, we visualize the
pixelwise difference between the generated images and ground truth in Fig. 5. Discordant
pixels are concentrated more on the target clothes area in the baselines (3 in the middle),
while for our model they are more evenly scattered across the entire image, including the
background. This verifies that the traditional scores using all pixels (ε =∞) for baselines may
look better thanks to better accordance on less important non-clothes areas, even though their
try-on results are not visually superior. We also report the variance of difference across all
pixels in Fig. 5, averaged over 2,000+ test images. Our model clearly shows lower variance,
demonstrating its robustness and consistency.

Ablation on CFM Inputs. We present an ablation study on the configuration of the CFM.
After the geometric warping, we have two warped images, the warped clothes ĉ in RGB and
the warped clothes mask ĉm. The CFM may take as input either or both of these, together
with the in-shop clothes image c.

Table 2 compares the performance of each setting. We observe that feeding only the mask
ĉm outperforms the other two. In other words, directly using the warped clothes ĉ deteriorates
the overall performance. This confirms that it is indeed important to let the CFM solely learn
to dress independently of the reference image I, instead of leaking information of the warped
image from the GMM into the TOM.
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Figure 6: Qualitative results with various poses
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5.2 Qualitative Analysis and User Study
Qualitative Comparison. Fig. 6 visually compares DP-VTON against baselines, CP-VTON+,
ACGPN, and PF-AFN on four examples. The images generated by CP-VTON+ show the
backside of a shirt around the neckline, and the overall color of the clothes is blended and
blurred. ACGPN shows better results but the shape of clothes looks similar to the reference
images, especially around the neckline and arm parts. PF-AFN produces more vivid images,
but it also faces difficulty in handling a variety of body shapes, as shown in Fig. 6 (top-right
and bottom-left). In contrast, our method better preserves the characteristics of the clothes,
regardless of the source clothes that the reference person wears. In the top-left case, for ex-
ample, DP-VTON dresses the blue round-neck clothes naturally without being mixed with
the brown V-neck long sleeve t-shirt in the source. These examples empirically verify that
DP-VTON better disentangles the characteristics of the person and those of source clothes.

Fig. 6 show additional examples with various poses. Our method dresses the target
clothes human-agnostically, regardless of pose or body shape. We again observe that our
method faithfully expresses the detailed characteristics of the target clothes and fits well on
diverse poses and body shapes, while others show limited preservation of such details.
User Study. We additionally conducted a user study to compare the models, to reflect general
human perception. We randomly sampled 200 examples from the VITON test set and divided
them into two sets, 100 in each. We invited 60 volunteers who are unfamiliar with virtual
try-on techniques, and randomly assigned them to either set A or B. Each question shows
the reference person (I), the target clothes (c), and 4 randomly-ordered virtual try-on images
generated by CP-VTON+, ACGPN, PF-AFN, and our DP-VTON. The participant was asked
to choose the best one among them. (Optionally, they could leave a comment if it is hard to
choose only one or if none of them is dressed properly.) More details about the user study
are provided in the Supplementary Materials with examples.

Aggregation CP-VTON+ ACGPN PF-AFN Ours

Participant-centric 7.2% 16.1% 11.4% 65.3%
Question-centric 2.5% 11.0% 10.0% 76.5%

Table 3: User study results on VITON

Table 3 summarizes the results. The first
line (participant-centric) shows the ratio of
participants who select each method most fre-
quently. That is, 65.3% of the participants an-
swer that our method produces the best result
most often. The second line shows a question-centric aggregation. For each question, one
method is chosen as the best by majority vote, and the table lists the ratio of questions
that each method is chosen as the best for. Our approach is chosen as the best for 76.5%
(153 questions out of 200), significantly outperforming others. This result confirms that our
method actually produces better quality of try-on images than existing methods in general.

6 Summary
We propose a simple yet effective method to better preserve details of the clothing and ref-
erence person for virtual try-on. With an additional module called Clothes Fitting Module
(CFM) after geometric warping, our DP-VTON model learns representations of the clothing
disentangled from the human figure or identity. By disentangling these two major compo-
nents of virtual try-on, the proposed method preserves the wearer-agnostic structure and
details of the clothing, and thus can fit a garment naturally to a variety of poses and body
shapes of the target person. Our model learns the behavior of “wearing clothes” in general,
just as a person would dress up in real life. This is confirmed by quantitative and qualitative
evaluations, with our novel patch-based metrics that reflect the semantics of clothes fitting.
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