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Supplementary Material for
Learning to Wear: Details-Preserved Virtual
Try-on via Disentangling Clothes and Wearer

A Detailed Model Architectures

Architecture of the CFM (Clothes Fitting Module) follows the same structure of U-Net de-
scribed in [11]. As described in Table i, it consists of an encoder (the left columns; from
the Input to conv5b layers) and a decoder (the right columns; from upsample1 to Output
layers). The encoder consists of 5 repeated blocks of two 3× 3 conv-layers with stride and
padding of size 1, respectively. After two convolution layers, a 2× 2 max-pooling layer is
applied for downsampling. For each convolution layer, we apply an instance normalization,
and we use a Rectified Linear Unit (ReLU) for activation. Every layer in the decoder con-
sists of an upsampling of the feature map with halved number of channels, a concatenation
with the corresponding feature map from the encoding path, and one 3×3 convolution, each
followed by a ReLU. At the final layer, a 3× 3 convolution with stride and padding of size
1 is used, slightly modified from the original U-Net [11]. In total, the network contains 22
convolutional layers.

B Baselines

There are additional current state-of-the-art works that we do not compare against for the
following reasons. VITON-HD [1] shows impressive quality in high-resolution images, but
we do not compare it qualitatively or quantitatively because their training dataset in high-
resolution is not publicly available. Dress in Order [2] is another recent work, focusing on
dressing clothes in a suggested order. Since the task is different from our standard virtual try-
on, this model is not comparable to our work. DCTON [3] tries to address the lack of paired
data by adopting a double-cyclic architecture. Since this model is similar in architecture and
shows similar performance with PF-AFN [4], we choose to compare with PF-AFN instead of
this work. LM-VTON [9] tries to express the characteristics of the clothes using landmarks
of clothes. As this model utilizes an additional information that is not a part of the VITON
dataset, we do not choose this as a baseline for fair comparison.
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Layer Details Output Size Layer Details Output Size

Input Clothes image (3×H ×W )
Warped mask (1×H ×W )

4×H ×W upsample1 2×2 upsampling 1024×H/8×W/8

conv1a 3×3×64
Instance Normalization
ReLU

64×H ×W conv6a 3×3×512
Instance Normalization
ReLU

512×H/8×W/8

conv1b 3×3×64
Instance Normalization
ReLU

64×H ×W conv6b 3×3×512
Instance Normalization
ReLU

512×H/8×W/8

pool1 2×2 max pool 64×H/2×W/2 conv6c 3×3×512
Instance Normalization
ReLU

512×H/8×W/8

conv2a 3×3×128
Instance Normalization
ReLU

128×H/2×W/2 upsample2 2×2 upsampling 512×H/4×W/4

conv2b 3×3×128
Instance Normalization
ReLU

128×H/2×W/2 conv7a 3×3×256
Instance Normalization
ReLU

256×H/4×W/4

pool2 2×2 max pool 128×H/4×W/4 conv7b 3×3×256
Instance Normalization
ReLU

256×H/4×W/4

conv3a 3×3×256
Instance Normalization
ReLU

256×H/4×W/4 conv7c 3×3×256
Instance Normalization
ReLU

256×H/4×W/4

conv3b 3×3×256
Instance Normalization
ReLU

256×H/4×W/4 upsample3 2×2 upsampling 256×H/2×W/2

pool3 2×2 max pool 256×H/8×W/8 conv8a 3×3×128
Instance Normalization
ReLU

128×H/2×W/2

conv4a 3×3×512
Instance Normalization
ReLU

512×H/8×W/8 conv8b 3×3×128
Instance Normalization
ReLU

128×H/2×W/2

conv4b 3×3×512
Instance Normalization
ReLU
Dropout (0.5)

512×H/8×W/8 conv8c 3×3×128
Instance Normalization
ReLU

128×H/2×W/2

pool4 2×2 max pool 512×H/16×W/16 upsample4 2×2 upsampling 128×H ×W

conv5a 3×3×1024
Instance Normalization
Relu

1024×H/16×W/16 conv9a 3×3×64
Instance Normalization
ReLU

64×H ×W

conv5b 3×3×1024
Instance Normalization
ReLU
Dropout(0.5)

1024×H/16×W/16 conv9b 3×3×64
Instance Normalization
ReLU

64×H ×W

conv9c 3×3×64
Instance Normalization
ReLU

64×H ×W

Output 3×3×64
Instance Normalization
ReLU

4×H ×W

Table i: Full architectural details of the CFM.
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(↓) LPIPSall LPIPSp
20 LPIPSp

25 LPIPSp
30

CP-VTON+ 0.133 0.067 0.114 0.115
ACGPN 0.406 0.237 0.349 0.358
PF-AFN 0.123 0.060 0.102 0.102
Ours 0.116 0.054 0.095 0.095

Table ii: Quantitative comparisons to state-of-the-art models with LPIPS using a pretrained
AlexNet [8].

CFM inputs LPIPSp
20(↓)

Warped clothes mask (ĉm) 0.054
Warped clothes (ĉ) 0.147
Both warped clothes (ĉ) and warped clothes mask (ĉm) 0.124

Table iii: Comparison on various CFM input configurations with LPIPS using a pretrained
AlexNet [8].

C Additional Evaluation Results
Table ii compares LPIPSalex with other baselines, and Table iii compares LPIPSalex with
various CFM input configurations, namely the warped clothes ĉ in RGB and/or the warped
clothes mask ĉm. The CFM may take as input either or both of these, together with the in-
shop clothes image c.

Overall, we observe a similar pattern in both tables to the results in Table 1 in the main
manuscript, reporting LPIPSVGG, except for the LPIPSall. Interestingly, the ACGPN turns
out to perform the best in terms of LPIPS based on VGG (in Table 1), while it is the worst
according to the metric based on AlexNet. This indicates that the metric based on the entire
pixels is highly unstable. On the other hand, we observe that the proposed metrics LPIPSp

ε

reserve the same ordering of all four methods across all εs we report, for Table 1 (in the main
manuscript) and Table ii.

D More on the User Study
Experimental Settings. We conducted a user study to compare the quality of generation
results. We randomly sampled 200 pairs from the VITON test set without cherry-picking
and divided them into 2 sets, 100 pairs in each with 60 volunteers who are unfamiliar with
virtual try-on techniques, and randomly assigned them to either set A or B. As illustrated in
Fig. i, each question shows the reference person (I), the target clothes (c), and 4 randomly-
ordered virtual try-on images generated by CP-VTON+, ACGPN, PF-AFN, and our method.
The participant was asked to choose the best try-on result among them. Fig. ii shows more
examples we used in the user study.

Results and Discussions. As mentioned in Sec. 6.4, in total 60 users participated in the
survey, and 65.3% of them chose our method most frequently as the best performing one.
Fig. iii shows the percentage of participants sorted by the number of questions they chose
ours as the best. We see that more than half of the participants chose ours as the best on ≥ 60
questions (out of 100). All participants chose ours as the best for at least 35 questions (out
of 100), which is significantly higher than 25, the expected number if randomly chosen from
4 choices. From the question-centric view, as described in Table iv, participants answered
that our model generated the best results compared to the other 3 baselines in 153 (76.5%)
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Figure i: A screenshot of a survey question.

Figure ii: Examples of user study questions.
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Figure iii: Number of questions in which participants chose our result as the best.

#Questions Ratio

CPVTON+ 5 2.5%
ACGPN 22 11.0%
PF-AFN 20 10.0%
Ours 153 76.5%

Table iv: Number of questions that each method was chosen as the best.

questions among 200 questions.
For reference, ACGPN [13] conducted a user study comparing with CP-VTON [12], VI-

TON [5], and VTNFP [14]. Unlike our study, they asked questions in an A/B (binary) man-
ner; that is, each question had two choices, one by their ACGPN method and the other by
one of the baselines. 66.7%, 89.8%, and 76.6% among the participants chose the proposed
method (ACGPN) against VTNFP, CP-VTON, and VITON, respectively. PFAFN [4] also
conducted a similar user study with 50 volunteers, comparing against CP-VTON, Cloth-
Flow [6], CP-VTON+ [10], ACGPN, and WUTON [7]. 84.3% of their participants chose
the proposed method against a single baseline, just as in the user study conducted by [13].
We emphasize that these two user studies asked the participants to choose one out of the
two candidates, one from the proposed method and the other from another baseline. Thus,
the arithmetic expectation of their experiment was 50%. On the other hand, our user study
showed all four images at the same time, making the expectation 25%, while we achieved a
65.3% (participant-centric) or 76.5% (question-centric) winning rate.

E More Qualitative Results
Fig. iv shows additional virtual try-on results using our proposed approach and three base-
lines [4, 10, 13]. Fig. v illustrates our and baselines’ generation results focusing on various
body shapes. Table v–vi list additional results on various poses using ACGPN, PF-AFN, and
ours.
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Figure iv: Additional qualitative virtual try-on results.
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Figure v: Additional results on various body shapes.
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Table v: Additional results on various poses (1/2)
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Table vi: Additional results on various poses (2/2)
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F Failure cases

We observe the proposed method struggles when arms are folded (marked with red box in
Fig. vi). Although it still shows better synthesized results than baselines, better handling such
complicated poses is an interesting direction for future work.

Figure vi: Qualitative comparisons with various poses.
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