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Abstract
Current Scene Graph Generation (SGG) methods tend to predict frequent predicate

categories and fail to recognize rare ones due to the severe imbalanced distribution of
predicates. To improve the robustness of SGG models on different predicate categories,
recent research has focused on unbiased SGG and adopted mean Recall@K (mR@K)
as the main evaluation metric. However, we discovered two overlooked issues about
this de facto standard metric, which makes current unbiased SGG evaluation vulnerable
and unfair: 1) mR@K neglects the correlations among predicates and unintentionally
breaks category independence when ranking all the triplet predictions together regardless
of the predicate categories. 2) mR@K neglects the compositional diversity of different
predicates and assigns excessively high weights to some oversimple category samples
with limited composable relation triplet types. In addition, we investigate the under-
explored correlation between objects and predicates, which can serve as a simple but
strong baseline for unbiased SGG. In this paper, we refine mR@K and propose two
complementary evaluation metrics for unbiased SGG: Independent Mean Recall (IMR)
and weighted IMR (wIMR). These two metrics are designed by considering the category
independence and diversity of composable relation triplets, respectively. We compare the
proposed metrics with the de facto standard metrics through extensive experiments and
discuss the solutions to evaluate unbiased SGG in a more trustworthy way1.

1 Introduction
Scene graphs are prevailing visually-grounded graph structured representations for scene un-
derstanding, which consist of a set of visual relation triplets (i.e., ⟨subject, predicate,
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1Code will be available at https://github.com/xcppy/Unbiased_SGG.
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Figure 1: Illustration of annotation characteristics of the VG dataset. (a) The number distribution of
samples for 25 most frequent predicates in VG. (c) The annotated ground-truths of the example image
(b) and some missing relation triplets. (d) Some reasonable predicates for unannotated object pairs.

object⟩) [28, 38, 40]. Given an input image, Scene Graph Generation (SGG) requires
models to not only localize and classify object categories accurately but also infer visual re-
lationships (i.e., predicates) between pairwise objects. Due to the inherent interpretability of
scene graphs, they have been widely used in many downstream vision-and-language tasks,
such as image retrieval [11, 30, 34], image captioning [9, 19, 41] and visual grounding [10].

However, it is hard to properly evaluate SGG models due to the intrinsic complexity of
the task and several inevitable annotation characteristics of SGG datasets (e.g. visual genome
(VG) [14]): 1) The annotations of SGG datasets are highly incomplete, i.e., it is unrealistic
to exhaustively annotate all reasonable visual relationship triplets in one image, thus lots of
positive triplets are missing. For example in Fig. 1 (c), ⟨cat, near, lamp⟩ and ⟨paw, of,
cat⟩ are missing in ground-truth annotations. To avoid falsely penalizing the unannotated
positive visual relations, early SGG work [22, 29, 37] exploits Recall@K (R@K) as the
evaluation metric rather than other prevalent metrics (e.g., mean average precision, mAP),
which measures the fraction of ground-truth visual relationship triplets that appear among
the top-K most confident triplet predictions in the image. 2) The data distribution of predi-
cate categories is long-tailed (cf. Fig. 1(a)), i.e., “head” predicates2 always have much more
samples than “tail” ones, leading to severe bias for model evaluation — the predicates for the
head categories dominate R@K performance. To observe the performance on each predicate
category and treat each category independently, recent work [3, 18, 32, 36, 39] follow a new
metric for evaluating unbiased SGG — mean Recall@K (mR@K).

Specifically, the implementation of mR@K can be summarized into three steps: 1) For
each image, it first ranks top-K triplet predictions as outputs according to the confidence
scores of all triplets and calculates the recall scores on each predicate category separately.
2) Then, it calculates the recall on each predicate category by averaging the corresponding
recall scores over all images. 3) Finally, the recall scores for all predicate categories are
averaged together to obtain the mR@K. However, there are still two overlooked critical
issues that make mR@K vulnerable and unfair:

The first issue is that the default mR@K unintentionally breaks the category indepen-
dence when ranking across categories to output top-K predictions, i.e., all triplet predictions
are ranked together by their confidence scores regardless of their predicate categories. By
“category independence”, we mean that we hope the evaluation of each category should not
be influenced by other categories. The setting of ranking across categories has no problem
applying to other conventional single-label classification paradigms. Unfortunately, in SGG

2For conciseness, we use “head” (or “tail”) predicates to represent these predicate categories in the “head” (or
“tail”) part of this long-tailed distributions in the following sections.
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dataset, the predicates are highly correlated and there might be multiple reasonable predi-
cates to describe the relationship for one object pair [15, 17]. For example in Fig. 1 (d),
predicate near and behind are both correct for the subject-object pair ⟨lamp, laptop⟩.
However, SGG is annotated following a single-label paradigm and only near is regarded as
the ground-truth3. In such a case, the predictions of those predicates that have high correla-
tions with other predicates will receive lower confidence scores after the normalization for
single-label classification (e.g., Softmax). They are then less likely to appear in the top-K
when ranking with the predictions of other predicates with low correlations, leading to un-
derestimated recall scores for those categories. Since each predicate category in the dataset
has different correlations with other categories, it is unfair to rank their predictions together.

The second issue is that the standard mR@K assigns equal weights to all predicate cate-
gories and neglects the compositional diversity of predicates in subject-object categories. By
“compositional diversity”, we mean the range of applicable scenarios for a predicate type,
which can be measured by the number of possible compositions of subject-object category
pairs. In existing SGG datasets, the compositional diversity of different predicates varies
greatly. Specifically, in VG dataset, the predicate on has more than 4K types of subject-
object category pairs while predicate flying-in only has two types. Meanwhile, we
observe that the tail predicates with fewer samples in SGG dataset usually possess limited
composable relation triplets. Thus, mR@K, by assigning equal weights to each category, ac-
tually assigns excessively high weights to the samples of these tail predicates. However, SGG
is a task to understand rich visual semantics of images, which encourages models to recog-
nize more types of visual relationship triplets. The simple category-wise averaging strategy
can not reflect this goal of the task. And our experiments found that a simple baseline could
easily trick mR@K by blindly utilizing the subject-object priors of those predicates with
limited compositional diversity.

In addition, to further benchmark unbiased SGG methods, we investigate the intrinsic
correlation between objects and predicates from a new perspective. Different from previous
frequency bias [43], we turn our attention to the distribution of object categories under each
predicate category and find this statistical prior can better reflect the correlation between
objects and predicates. Based on this, we devise a simple baseline by directly aggregating
this statistical prior into the predictions of SGG models and it greatly improves unbiased
SGG performance. We think that this simple but strong method can serve as a baseline for
the following unbiased SGG research.

In this paper, we refined the default mR@K and proposed two complementary metrics —
Independent Mean Recall (IMR) and weighted IMR (wIMR) — to help evaluate unbiased
SGG more fairly. Specifically, IMR ranks the predictions for each category independently
to remove the mutual influence between categories, and wIMR assigns different weights to
each predicate category by considering compositional diversity. We evaluate plenty of state-
of-the-art unbiased SGG models on both current and new proposed metrics to compare their
difference and discuss the solutions to evaluate unbiased SGG in a more trustworthy way.

2 Related Work
Scene Graph Generation. The mainstream SGG methods can be classified into two major
categories: 1) Two-stage pipeline [3, 16, 31, 39, 42, 43], which detect the objects first and

3Following the conventions in previous SGG work, for each subject-object pair, only one ground-truth predicate
is used for the training and evaluation.
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then output the relationship predictions for every object pairs; 2) One-stage pipeline [24, 25,
28], which simultaneously detect objects and relationships. Most SGG studies are based on
the two-stage pipeline [4, 21, 23, 33, 45]. Some work focused on learning better contextual
features [31, 38, 43]. They encode visual context of images into predicate representations by
exploiting various powerful context encoding architectures, such as Bi-LSTM [43], TreeL-
STM [31], and graphs [18, 27, 33, 38]. In addition, some studies are interested in improving
the training loss [2]. Aside from these two-stage methods, there are also some other stud-
ies focusing on one-stage pipeline [12, 24, 25, 28]. Compared to two-stage methods, they
are trained in an end-to-end manner. Typically, they usually treat the detection of objects
and relationships as a point detection problem. For instance, in PPDM [24] and IPNet [35],
they separately localize and classify the object points and interaction points, and then group
them. Besides, since the fully supervised SGG requires excessive human labeling efforts,
some recent work [20, 44] begins to focus on weakly supervised SGG. They only utilized
image-caption pairs to train SGG models. The main challenge of weakly supervised SGG is
to generate an alignment between text entities in captions and image regions.
Evaluation Metrics for SGG. SGG evaluation is always challenging due to the intrinsic
complexity of the SGG tasks and annotation characteristics. It is continuously discussed in
many SGG studies [3, 13, 26, 28, 31]. In early work [26, 28, 38, 43], the most widely used
metric is Recall@K (R@K). It measures the fraction of the ground-truths that appear among
the top-K most confident predictions in an image. In [28], they allowed each subject-object
pair to have multiple predicates, which means all the predicates will be involved in the recall
ranking for each subject-object pair not just the one with the highest score. This setting sig-
nificantly improves the performance of R@K and is named No Graph Constraint Recall@K
(ngR@K). In [13], they propose Weighted Triplet Recall@K to calculate recall by averaging
the recall score on each type of visual relationship triplet. Besides, increasing recent studies
have realized the long-tailed issue in SGG datasets, they propose Mean Recall@K (mR@K)
to evaluate unbiased SGG. In this paper, we mainly discuss two overlooked issues by current
metrics and propose two complementary metrics to evaluate unbiased SGG. Different from
mR@K, IMR treats each predicate category independently and WIMR assigns weights to
different categories by taking the compositional diversity into consideration.

3 Analyses of Current Unbiased SGG Benchmark
In this section, we first detailed introduce the two overlooked issues in existing metrics and
show their influence on evaluation results through data analysis. Then, we discuss the solu-
tions to these issues and provide two complementary metrics for unbiased SGG evaluation.

3.1 Category Independence
The standard mR@K ranks all the predictions together by their estimated confidence scores
to output top-K predictions, and then averages recall scores for each predicate category. It
originally aims to treat each predicate category independently. However, we argue that rank-
ing across categories in each image inadvertently involves cross-category interaction [6].
The current SGG task is formulated as a single-label classification problem and only one
predicate is regarded as the ground truth. However, due to the strong label correlation in
SGG dataset, there might be multiple reasonable predicates for one object pair. For example
in Figure 1(d), looking-at, in-front-of and watching are all reasonable predi-
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(a) Biased Outputs.
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(b) Debiased Outputs.
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(c) Debiased Outputs after Softmax.
Figure 2: Visualization of the output for each predicate (ground truth). Each row of data in the heatmap
represents the averaged output distribution of the samples annotated as the predicate left in the figure.
For visualization, we normalize the scores over the whole map and only display a part of the predicates.

cates for the subject-object pair ⟨cat, laptop⟩. In such a case, the single-label annotation
setting will bring unfairness for the predicates with high correlations when ranking across
categories. Consider a “perfect” SGG model which is expected to score all these possibly
correct predicates high (e.g. score 1.0 for all the above three predicates, 0.0 for the rest), the
probability scores of these categories will be suppressed relatively after the normalization for
single-label classification (e.g. softmax). Consequently, the recall score of the watching
triplets will be underestimated as these predictions are less likely to appear in top-K with
low confidence scores. Thus, it is unfair to compare and rank all predicates together.
Dataset Analysis. To observe the influence of predicate correlations on evaluation by a real
dataset, we visualize three output distributions for each predicate category based on a state-
of-the-art SGG model Motifs [43] in Figure 2, including: (a) the logits distribution of bi-
ased Motifs model before softmax; (b) the logits distribution of unbiased Motifs model with
reweight [32] strategy4; (c) the probability scores of the unbiased Motifs model after soft-
max. All visualization outputs are averaged over the test set of VG. From the figure, we can
easily observe two phenomena: (1) Comparing Figure 2(a) and Figure 2(b), we can see that
reweight strategy can alleviate the bias on the head predicates (e.g., on marked orange in the
figure) shown in Figure 2(a) to a certain extent. However, we can find there are some ubiqui-
tous correlations among some predicate categories (marked red in the figure). For example,
the samples annotated as wearing normally output high scores on its alternative predicates
(i.e., wears, has and in) as well. Similarly, it also occurs between walking on and
standing on, belonging to and of. (2) Comparing Figure 2(b) and Figure 2(c), we
can see that the normalized probabilities (used as confidence scores to rank) of the predicates
(correctly recognized) with high correlations (e.g. wearing and belonging to, marked
red in the figure) are suppressed relatively compared to other predicates. In the subsequent
ranking process, they are more likely to be sorted behind unfairly. To this end, we suggest
removing the setting of ranking across categories and sorting each category independently.

3.2 Compositional Diversity
Unbiased SGG aims to remove the impact of data imbalance in the model training pro-
cess and encourage the models to recognize the tail predicates which have limited samples.
Therefore, it assigns equal weights to each predicate category to reduce the proportion of

4The inversed sample fractions were assigned to each predicate category as weights in cross-entropy loss.
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Figure 3: The number of composed object pairs for
each category in VG (30 predicates are shown).

#typepair mR@100 Impro.%
Motifs (N=0) - 17.2 -
N = 1 (flying in) 2 18.4 1.2
N = 2 (says) 20 19.2 2.0 +0.8
N = 3 (parked on) 29 21.0 3.8 +1.8
N = 4 (playing) 37 20.9 3.7 - 0.1
N = 5 (growing on) 41 22.3 5.1 +1.4
N = 6 (made of) 42 22.9 5.7 +0.6

Table 1: Performance (%) of Motifs [43] on
PredCls by blindly replacing the results of the
corresponding subject-object pairs for N predi-
cates with smallest compositional space.

head samples in performance. However, we argue that this category-wise averaging strategy
can not reflect the rich structure of predicates on composed relationship triplets. Hence, in
this paper, we investigate the predicate categories from a new perspective: compositional
diversity, i.e., the number of possible subject-object category pairs for each predicate.
Studies of Compositional Diversity. To observe the compositional diversity of different
predicates, we count the numbers of all possible composed subject-object category pairs for
each predicate category in VG dataset. As shown in Figure 3, we can see that the compo-
sitional diversity of different predicates varies greatly, i.e., the head categories in the figure
typically have more generic semantics and can be applied to plenty of subject-object pairs,
while the tail ones in Figure 3 are more specific and can be only applied to a few subject-
object category pairs. For example, predicate parked on mainly occurs between various
vehicles and places, like ⟨car, parked-on, road⟩.

Meanwhile, we can observe the tail predicates (rare ones) in the SGG datasets usually
possess limited compositional diversity. Thus, mR@K unconsciously assigns high weights
to the samples of those predicates with limited compositional diversity. However, our exper-
iments found that the performance of these tail predicates can be easily boosted by subject-
object priors. Here, we devised a simple experiment and recorded mR@K scores: 1) We
firstly evaluate a well-trained state-of-the-art SGG model Motifs [43] on the PredCls5. 2)
For the last N tail predicate categories in Figure 3, we find out all their possible compos-
able subject-object pairs in the training dataset, then for each composable subject-object pair
of predicate category c, we replace their predictions as the predicate c6 at test. For exam-
ple, when N = 1, we directly predict the predicates of all subject-object pairs with categories
⟨kites, snow⟩ and ⟨planes, planes⟩ as flying-in. We set N from 1 to 6 and record
mR@K performance in Table 1. From the table, we can observe that the results on mR@K
are continuously improved with the increase of N. Specifically, mR@100 is improved by
1.2% points only by blindly replacing the predictions for flying-in. Then, by further
replacing the results of all corresponding subject-object pairs for predicate says, mR@100
is improved by 2.0% points accumulatively. We can observe that the predicates with limited
compositional diversity have a stronger correlation with subject-object priors, which can
be simply improved even without visual information.

5There are three typical SGG tasks: 1) Predicate Classification (PredCls): Given the ground-truth of object
bounding boxes (bboxes) and class labels, the model is required to predict the predicate class of pairwise objects.
2) Scene Graph Classification (SGCls): Given the ground-truth of object bboxes, the model is required to predict
both object classes and predicate classes of pairwise objects. 3) Scene Graph Detection (SGDet): Given an image,
the model is required to detect object bboxes, and predict object classes and predicate classes of pairwise objects.

6For the same subject-object category pair with multiple tail predicate choices, we select the one with more
limited compositional diversity.

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018



LI, CHEN, SHAO ET AL.: RETHINKING THE EVALUATION OF UNBIASED SGG 7

3.3 Suggestion on Evaluation Metrics

To handle the above-mentioned issues, we discuss and provide two complementary metrics
to improve the current unbiased SGG evaluation benchmarking. In addition, we devise a
simple baseline and improve unbiased SGG performance greatly.
Independent Mean Recall (IMR). Since there are actually many multiple reasonable predi-
cates for some subject-object pairs, it is unfair to rank all triplet predictions across categories
under the single-label classification problem formulation. One intuitive and straightforward
solution to solve this problem is to build a well-annotated test dataset and redefine the task
as a multi-label classification problem. However, it costs expensive to annotate exhaustively
all the reasonable predicates for the subject-object pairs. Hence, we provide one solution to
treat each predicate category independently and avoid their mutual influence.

For each image, we independently rank and output top-K (K = 10/20/50) predictions
for each predicate category to calculate their own recall scores on this image. In this way, we
remove the influence of different categories and the predicates with high correlations will not
be suppressed by the other predicates. Then we obtain the recall on each predicate category
by averaging the corresponding scores over all images. The final score is the averaged value
over categories. We call this metric Independent Mean Recall (IMR).
Weighted Independent Mean Recall (wIMR). The standard mR@K treats each predicate
category equally and assigns equal weights to each predicate category. However, the target of
the SGG task is to recognize more types of composed relation triplets rather than purely more
kinds of predicates. Because the predicate categorical labels do not reflect the rich structures
in the object relationships. The composable diversity varies widely between different predi-
cates. Recent studies report the mean value of R@K and mR@K to expect models pay more
attention to head predicates when realizing debiasing targets. However, R@K is not reliable
because the variety of the number of head and tail predicates is too great. Besides, some
predicates (e.g., wearing) with large distribution does not have rich semantics and have
limited compositional diversity as shown in Figure 5.

Therefore, we suggest reassigning weights to each predicate category c according to the
complexity of their compositional space. We count the number of composed subject-object
pairs nc for each predicate category, and reassign weights to each predicate category c:

w(nc) =
nτ

c

∑k∈C nτ
k
, wIMR = ∑

c∈C
w(nc)× IMR(c), (1)

where C is the set of predicate categories, τ ∈ [0,1] controls the softness of weight distribu-
tion. When τ = 0, wIMR equals IMR, which assigns equal weights to each predicate.

4 Intrinsic Correlation between Predicates and Objects

Different from other conventional scene understanding tasks, SGG predicts the predicates
with corresponding subject-object pair information, which will bring in plenty of inductive
information. Zellers et al. [43] finds the prediction of predicates is highly correlated with
subject-object priors. They count the co-occurrence of subjects, objects and predicates in
relation triplets and obtain a statistics matrix from training dataset A ∈ RNs×No×Np (where
Ns = No is the number of object categories, and Np is the number of predicate categories).
They aggregate the dimensions of subjects and objects to find the frequent predicate under
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0.96

0.82

0.88
0.86

wearing parked on

Figure 4: Performance of each predicate category
on mR@50 and IMR@20 for Motifs+Reweight
(Predcls). Categories are displayed in descending
order according to the number of samples in VG.

Figure 5: Weights assigned to each predicate cat-
egory on different metric settings. Categories are
displayed in descending order according to the
number of samples in VG.

the given pair. For example, on is the most frequent predicate under ⟨car, street⟩. How-
ever, this statistical prior actually collects the frequency bias and can not reflect the intrinsic
correlation between predicates and objects. In this paper, we find that it is more reasonable to
observe the distribution of objects over each predicate to find the correlation between pred-
icates and objects. For example, if we count the most frequent objects given parked on,
we can find its most relevant object category is car, which is in line with common sense.
We call this statistical prior Predicate Knowledge on Objects (PKO). Reasonably exploiting
this part of statistical knowledge PKO can improve unbiased SGG models’ performance.

In this paper, we devise a simple baseline to directly aggregate PKO into the inference re-
sults of SGG models (without training) following the frequency prior in Motifs [43]. From A,
we can easily obtain the predicate-subject co-occurrence matrix As ∈RNp×Ns and predicate-
object co-occurrence matrix Ao ∈ RNp×No , separately. Then, we normalize the matrices on
the dimension of subject (object) and obtain the distribution of subject (object) under all
predicates: Ãs ∈ RNp×Ns and Ão ∈ RNp×No . Finally, given a subject-object pair (i, j), an
SGG model will output the predicate logits ẑi, j ∈ RNp , we aggregate the statistical prior by:

zi, j = ẑi, j +bi, j, bi, j,k =−log
Ãs

k,i

∑c∈C Ãs
c,i

− log
Ão

k, j

∑c∈C Ão
c, j

, (2)

where C is the set of predicate categories and zi, j is the final output of the SGG model. We
can find this simple baseline improves unbiased performance greatly (in Sec. 5.2). The main
improvements are on the predicates with limited compositional diversity which verifies the
statements in Sec. 3.2, i.e., these predicates are more highly correlated with subject-object
priors and can be simply improved even without visual information.

5 Experiments
In this section, we develop experiments to discuss the proposed metrics and compare them
with current metrics. We also evaluate different unbiased SGG methods on these metrics.

Dataset. We evaluated all results on the challenging Visual Genome [14], which is a large-
scale widely-used benchmark in SGG tasks. We adopt the popular split [39, 43], which
includes the most frequent 150 object categories and 50 predicate classes. After preprocess-
ing, each image has 11.5 objects and 6.2 relationships on average. The split uses 70% of
images for training and 30% for the test.
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Method PredCls
R@20 / 50 / 100 mR@20 / 50 / 100 IMR@10 / 20 / 50 wIMR@10 / 20 / 50

PKO 10.10 / 15.51 / 19.44 17.86 / 27.38 / 33.93 38.03 / 39.02 / 40.90 29.75 / 30.79 / 31.38

Motifs

Baseline 59.19 / 65.59 / 67.30 12.62 / 15.96 / 17.23 14.53 / 16.11 / 17.45 24.80 / 27.99 / 30.97
TDE 33.35 / 45.89 / 51.24 17.85 / 24.77 / 28.72 27.33 / 29.52 / 31.06 32.64 / 35.59 / 37.72

DLFE 44.28 / 50.33 / 51.99 21.86 / 26.81 / 28.53 26.37 / 27.92 / 29.03 31.49 / 34.02 / 35.73
NICE 48.15 / 55.14 / 57.15 23.67 / 29.83 / 32.24 28.35 / 31.31 / 33.12 31.61 / 35.26 / 37.84

Reweight 26.57 / 36.08 / 40.39 23.98 / 30.79 / 34.48 35.39 / 36.58 / 36.98 36.13 / 37.52 / 38.05
RTPB(CB) 36.58 / 42.64 / 44.36 27.61 / 32.78 / 34.57 30.55 / 33.30 / 35.02 33.63 / 37.16 / 39.32

PKO 49.08 / 55.95 / 58.18 24.98 / 31.44 / 33.98 29.73 / 32.46 / 34.21 31.77 / 35.51 / 38.51

VCTree

Baseline 59.72 / 65.86 / 67.50 13.26 / 16.82 / 18.12 15.36 / 16.99 / 18.30 25.31 / 28.58 / 31.58
TDE 34.48 / 44.89 / 49.20 19.07 / 25.61 / 29.13 27.24 / 29.46 / 31.03 32.59 / 35.70 / 38.05

DLFE 45.35 / 51.21 / 52.75 22.53 / 27.36 / 28.86 26.46 / 28.28 / 29.30 31.49 / 34.27 / 36.01
NICE 48.38 / 55.03 / 56.92 24.42 / 30.74 / 33.01 29.03 / 32.01 / 33.93 31.72 / 35.41 / 38.12

Reweight 28.66 / 35.62 / 37.90 28.64 / 34.93 / 37.28 34.70 / 36.95 / 38.30 34.41 / 36.94 / 38.42
RTPB(CB) 36.65 / 42.39 / 43.95 28.64 / 33.41 / 35.11 30.57 / 33.47 / 33.50 33.22 / 36.99 / 39.50

PKO 49.39 / 56.06 / 58.18 26.06 / 32.20 / 34.61 30.61 / 33.41 / 35.29 31.98 / 35.73 / 38.88

Table 2: Performance comparison of different unbiased SGG methods (w.r.t.Predcls) on metrics: R@K,
mR@K, IMR@K, wIMR@K. VCTree [31] and Motifs [43] are two popular compared baseline models
in unbiased SGG. All experimental results are re-implemented using official released codes. The best
and second best results are marked according to formats.

5.1 Comparison between Existing and New Metrics

IMR@K vs. mR@K. In Figure 4, we display the recall scores of each predicate category
on mR@50 and IMR@20 for Motifs-Reweight w.r.t. PredCls, respectively. We can see that
the recall scores of the predicates in Figure 2 underestimated by mR@K are more fairly
evaluated on IMR@K. For example, the recall scores of the high correlated predicates, like
wearing, of and watching, ascend significantly on IMR@20 compared to mR@50.
While the predicate parked on has no obvious improvement on IMR@20 as it is slightly
influenced by the confidence sharing shown in Figure 2(c). Compared to mR@K, IMR@K
provides a more fair score for these over-estimated predicate categories.
wIMR@K vs. mR@K/R@K. In Figure 5, we display the weights of different predicates
(on VG dataset) in R@K, mR@K/IMR (τ = 0.0) and wIMR (τ = 0.5). We can observe
that the classic R@K mainly focuses on head predicates although some head predicates have
limited compositional diversity (e.g. wearing). While mR@K assigns equal weights to
all predicates despite their difference in compositional diversity, and the samples of some
predicates with limited compositional diveristy like flying-in are assigned excessively
high weights. In contrast, wIMR, by considering compositional diversity, manages to assign
high weights to predicates with rich semantics (e.g.,of and under) and low weights to
predicates with simple semantics (e.g.,flying-in and wearing). The value of τ controls
the softness of the weight distribution and can be adjusted according to task target, we set
τ = 0.5 in the default implementation of wIMR.

5.2 Evaluation on Current Methods

Benchmarking SOTA Unbiased SGG Methods. For the convenience to further compare
with current unbiased SGG methods, we report the performance of five SOTA unbiased SGG
methods on current and new proposed metrics, including TDE [32], DLFE [5], NICE [15],
RTPB(CB) [1] and Reweight [32]. The details are reported in Table 2 and Table 3.
Effectiveness of Predicate Knowledge on Objects (PKO). We also report the performance
of models with our proposed statistical prior in Table 2 and Table 3. Wherein, the simple
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Method SGCls
R@20 / 50 / 100 mR@20 / 50 / 100 IMR@10 / 20 / 50 wIMR@10 / 20 / 50

PKO 7.26 / 10.48 / 12.46 11.23 / 16.77 / 20.13 20.51 / 22.47 / 23.11 16.04 / 17.13 / 17.68

Motifs

Baseline 36.39 / 39.59 / 40.35 7.44 / 9.09 / 9.63 7.69 / 8.65 / 9.57 13.65 / 15.70 / 17.76
TDE 20.46 / 26.31 / 28.78 9.78 / 13.21 / 15.07 13.98 / 15.22 / 16.29 16.95 / 18.69 / 20.16

DLFE 26.63 / 29.79 / 30.61 13.23 / 15.66 / 16.48 14.75 / 15.82 / 16.57 17.96 / 19.65 / 20.85
NICE 29.48 / 33.06 / 34.05 13.63 / 16.67 / 17.88 14.82 / 16.76 / 18.02 17.00 / 19.35 / 21.07

Reweight 18.67 / 23.49 / 25.47 13.49 / 16.75 / 18.34 17.82 / 18.69 / 19.23 19.13 / 20.38 / 21.14
RTPB(CB) 22.66 / 25.85 / 26.65 15.77 / 18.16 / 18.97 16.08 / 17.68 / 18.81 18.51 / 20.61 / 21.99

PKO 30.41 / 33.99 / 35.05 14.06 / 17.59 / 19.12 15.87 / 17.49 / 18.66 17.43 / 19.72 / 21.72

VCTree

Baseline 42.09 / 45.80 / 46.73 9.09 / 11.28 / 12.04 9.72 / 10.89 / 11.94 16.52 / 18.90 / 21.26
TDE 23.48 / 31.17 / 34.59 10.36 / 14.47 / 16.72 15.81 / 17.32 / 18.48 19.71 / 21.73 / 23.35

DLFE 30.09 / 33.85 / 34.80 16.17 / 19.23 / 20.20 18.81 / 20.04 / 20.62 21.75 / 23.58 / 24.65
NICE 33.77 / 37.84 / 38.99 16.14 / 20.03 / 21.29 17.89 / 19.91 / 21.59 20.16 / 22.77 / 24.80

Reweight 20.44 / 24.66 / 25.97 18.72 / 22.88 / 24.19 22.14 / 23.66 / 24.58 22.04 / 23.93 / 25.07
RTPB(CB) 26.06 / 29.63 / 30.61 18.67 / 21.41 / 22.52 19.64 / 21.41 / 22.63 22.04 / 24.41 / 25.93

PKO 35.01 / 39.10 / 40.40 18.43 / 22.27 / 23.74 19.88 / 21.72 / 23.01 21.14 / 23.77 / 26.09

Method SGDet
R@20 / 50 / 100 mR@20 / 50 / 100 IMR@10 / 20 / 50 wIMR@10 / 20 / 50

PKO 5.53 / 7.77 / 9.46 7.48 / 10.97 / 13.85 19.37 / 19.87 / 20.76 15.17 / 15.48 / 16.14

Motifs

Baseline 25.79 / 33.04 / 37.49 5.37 / 7.37 / 8.61 7.99 / 8.33 / 8.85 14.98 / 15.26 / 15.80
TDE 11.94 / 16.57 / 20.15 6.54 / 8.93 / 10.95 13.67 / 13.89 / 14.55 17.58 / 17.72 / 18.18

DLFE 18.29 / 24.52 / 28.45 8.50 / 11.29 / 13.24 12.15 / 13.18 / 14.58 16.12 / 16.88 / 18.09
NICE 21.30 / 27.83 / 31.75 8.82 / 12.23 / 14.40 12.89 / 13.42 / 14.41 16.54 / 16.96 / 17.78

Reweight 12.63 / 17.26 / 20.59 8.88 / 11.78 / 14.09 15.36 / 16.12 / 17.75 17.71 / 18.20 / 19.31
RTPB(CB) 14.72 / 20.13 / 23.75 11.35 / 14.45 / 16.74 13.60 / 14.35 / 15.91 16.65 / 17.15 / 18.31

PKO 20.38 / 26.95 / 31.14 9.64 / 13.44 / 16.06 14.66 / 15.39 / 16.82 17.48 / 17.96 / 18.97

VCTree

Baseline 24.96 / 32.15 / 36.36 5.20 / 7.05 / 8.28 7.44 / 7.68 / 8.11 14.34 / 14.53 / 14.98
TDE 12.11 / 17.07 / 20.72 6.73 / 9.32 / 11.28 13.57 / 13.73 / 14.28 17.69 / 17.81 / 18.17

DLFE 17.61 / 23.58 / 27.21 8.76 / 11.63 / 13.32 11.80 / 12.73 / 14.24 15.03 / 15.68 / 16.87
NICE 20.70 / 26.99 / 30.78 8.39 / 11.96 / 14.08 12.84 / 13.28 / 14.27 16.13 / 16.49 / 17.30

Reweight 15.35 / 20.30 / 23.72 9.90 / 12.69 / 15.00 13.23 / 14.08 / 15.80 15.98 / 16.50 / 17.73
RTPB(CB) 14.52 / 19.70 / 23.17 10.79 / 13.68 / 15.85 12.89 / 13.51 / 15.12 15.95 / 16.38 / 17.59

PKO 20.00 / 26.48 / 30.68 9.59 / 13.24 / 15.85 15.35 / 15.85 / 17.25 17.77 / 18.11 / 19.05

Table 3: Performance on SGCls and SGDet. All experimental results are re-implemented using official
released codes. The best and second best results are marked according to formats.

baseline, PKO, means that we only utilize the statistical prior to make predictions. Amaz-
ingly, we can find it achieves excellent performance on IMR@K and mR@K. However, as
it mainly improves the performance of the predicates with limited compositional diversity, it
did not perform well on wIMR@K and R@K. We aggregate PKO into other SGG models,
and it greatly improves their unbiased performance (e.g. Motifs-PKO and VCTree-PKO).

6 Conclusions

In this paper, we focused on two overlooked issues which make the current evaluation bench-
mark vulnerable and unfair: 1) mR@K unintentionally breaks the category independence
when ranking across categories; 2) mR@K assigns equal weights for each predicate but
neglects the compositional diversity of subject-object pairs. We discussed the influence of
these issues through statistical data analysis and provided two complementary metrics for
unbiased SGG evaluation to address the two above-mentioned issues. We additionally in-
vestigated a statistical prior which reflects the intrinsic correlation between predicates and
objects. Based on this, we devised a simple but strong baseline for unbiased SGG research.
We hope that our work is able to contribute some insights to this area and help benchmark
unbiased SGG methods in a more trustworthy way. Furthermore, our discussion is general
which may be extended to video SGG scenarios [7, 8].
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