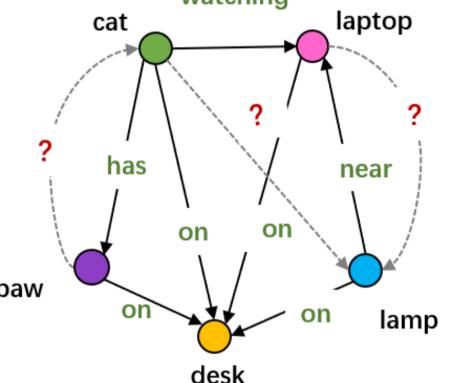
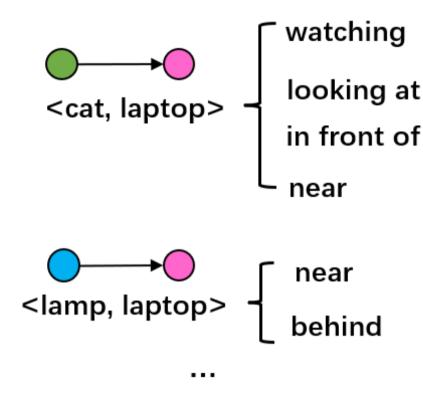

# Rethinking the Evaluation of Unbiased Scene Graph Generation


Xingchen Li<sup>1</sup>, Long Chen<sup>2\*</sup>, Jian Shao<sup>1</sup>, Shaoning Xiao<sup>1</sup>, Songyang Zhang<sup>3</sup>, Jun Xiao<sup>1</sup>


<sup>1</sup>Zhejiang University, <sup>2</sup>Columbia University, <sup>3</sup>University of Rochester



#### SGG Dataset Annotation



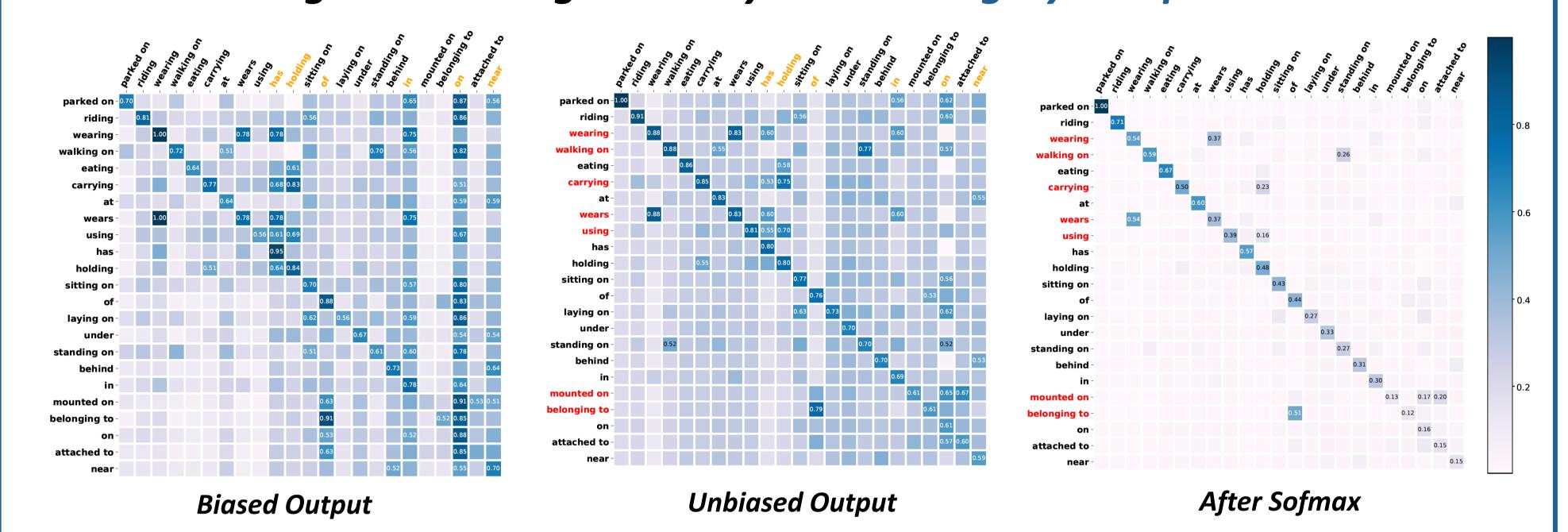




### Incompleteness

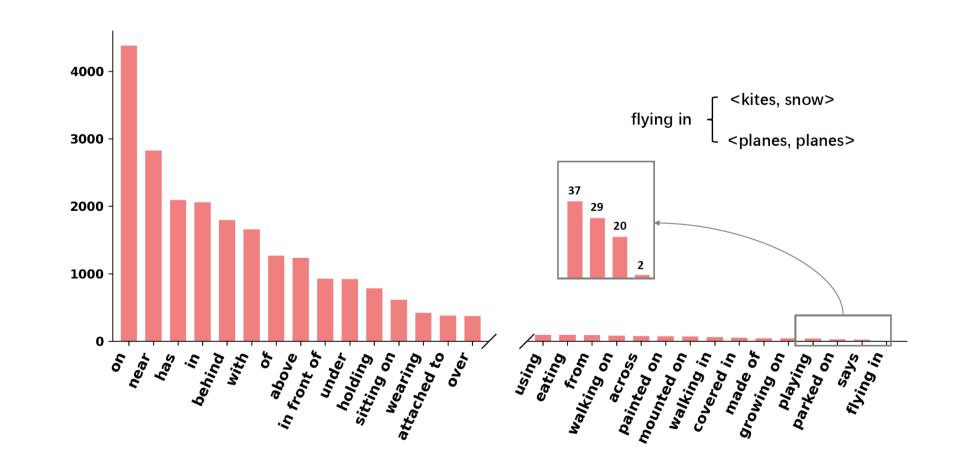
#### High Correlation

Due to intrinsic complexity of the task and these inevitable annotation characteristics of SGG datasets, it is hard to properly evaluate SGG models.


# Predicate Knowledge on Objects

We investigate the intrinsic correlation between objects and predicates from a new perspective. We turn our attention to the distribution of object categories under each predicate category and obtain a new statistical prior, Predicate Knowledge on Objects (PKO). Directly aggregating PKO into the inference results of SGG models can improve unbiased performance of SGG models.

$$\mathbf{z}_{i,j} = \mathbf{\hat{z}}_{i,j} + \mathbf{b}_{i,j}, \qquad b_{i,j,k} = -\mathrm{log} rac{\mathbf{ ilde{A}}_{k,i}^{s}}{\sum_{c \in \mathcal{C}} \mathbf{ ilde{A}}_{c,i}^{s}} - \mathrm{log} rac{\mathbf{ ilde{A}}_{k,j}^{o}}{\sum_{c \in \mathcal{C}} \mathbf{ ilde{A}}_{c,j}^{o}}$$


### Two Overlooked Issues and Suggestions

#### Ranking across categories may break category Independence.

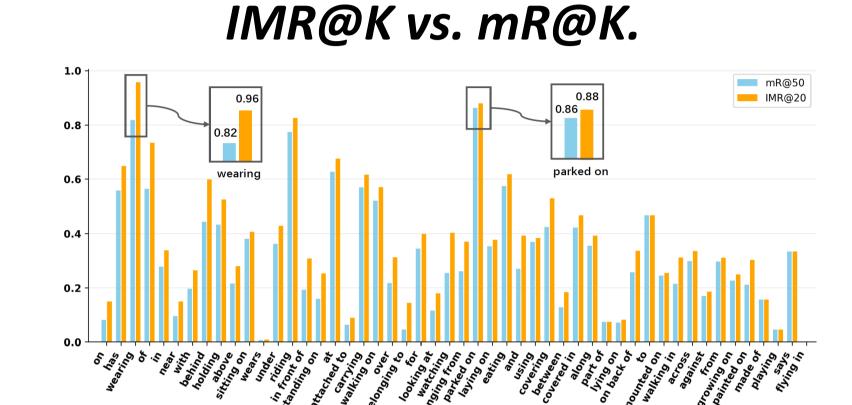


#### Assigning equal weights neglecting compositional diversity.

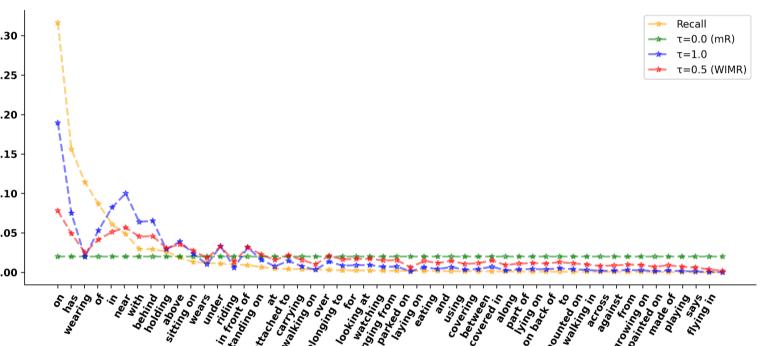
The compositional diversity of different predicates varies greatly. We devised a simple experiment and observe that the predicates with limited compositional diversity have a stronger correlation with subject-object priors, which can be simply improved even without visual information.



|                    | #type <sub>pair</sub> | mR@100 | Impro.%          |
|--------------------|-----------------------|--------|------------------|
| Motifs (N=0)       | -                     | 17.2   | -                |
| N = 1 (flying in)  | 2                     | 18.4   | 1.2              |
| N=2 (says)         | 20                    | 19.2   | <b>2.0</b> +0.8  |
| N=3 (parked on)    | 29                    | 21.0   | <b>3.8</b> +1.8  |
| N = 4 (playing)    | 37                    | 20.9   | <b>3.7</b> - 0.1 |
| N = 5 (growing on) | 41                    | 22.3   | <b>5.1</b> +1.4  |
| N = 6 (made of)    | 42                    | 22.9   | <b>5.7</b> +0.6  |


**Independent Mean Recall (IMR).** We suggest independently ranking and output top-K (K = 10/20/50) predictions for each predicate category to calculate their own recall scores on this image.

Weighted Independent Mean Recall (wIMR). We suggest reassigning weights to each predicate category c according to the complexity of their compositional space. We count the number of composed subject-object pairs  $n_c$  for each predicate category, and reassign weights to each predicate category c.


$$w(n_c) = \frac{n_c^{\tau}}{\sum_{k \in \mathcal{C}} n_k^{\tau}}, \qquad wIMR = \sum_{c \in \mathcal{C}} w(n_c) \times IMR(c)$$

## Experimental Results

Compared to mR@K, IMR@K provides a more fair score for those overestimated predicate categories.



#### wIMR@K vs. mR@K/R@K..



By considering both data distribution and compositional diversity, wIMR manages to assign high weights to predicates with rich semantics and low weights to predicates with simple semantics.

#### Benchmarking SOTA Unbiased SGG Methods and PKO

|               | Mathad   | PredCls               |                       |                       |                                            |  |
|---------------|----------|-----------------------|-----------------------|-----------------------|--------------------------------------------|--|
|               | Method   | R@20/50/100           | mR@20/50/100          | IMR@10/20/50          | wIMR@10/20/50                              |  |
|               | PKO      | 10.10 / 15.51 / 19.44 | 17.86 / 27.38 / 33.93 | 38.03 / 39.02 / 40.90 | 29.75 / 30.79 / 31.38                      |  |
|               | Baseline | 59.19 / 65.59 / 67.30 | 12.62 / 15.96 / 17.23 | 14.53 / 16.11 / 17.45 | 24.80 / 27.99 / 30.97                      |  |
| Motifs        | TDE      | 33.35 / 45.89 / 51.24 | 17.85 / 24.77 / 28.72 | 27.33 / 29.52 / 31.06 | 32.64 / 35.59 / 37.72                      |  |
|               | DLFE     | 44.28 / 50.33 / 51.99 | 21.86 / 26.81 / 28.53 | 26.37 / 27.92 / 29.03 | 31.49 / 34.02 / 35.73                      |  |
|               | NICE     | 48.15 / 55.14 / 57.15 | 23.67 / 29.83 / 32.24 | 28.35 / 31.31 / 33.12 | 31.61 / 35.26 / 37.84                      |  |
|               | Reweight | 26.57 / 36.08 / 40.39 | 23.98 / 30.79 / 34.48 | 35.39 / 36.58 / 36.98 | <b>36.13</b> / <b>37.52</b> / 38.05        |  |
|               | RTPB(CB) | 36.58 / 42.64 / 44.36 | 27.61 / 32.78 / 34.57 | 30.55 / 33.30 / 35.02 | 33.63 / 37.16 / <b>39.32</b>               |  |
|               | PKO      | 49.08 / 55.95 / 58.18 | 24.98 / 31.44 / 33.98 | 29.73 / 32.46 / 34.21 | 31.77 / 35.51 / 38.51                      |  |
|               | Baseline | 59.72 / 65.86 / 67.50 | 13.26 / 16.82 / 18.12 | 15.36 / 16.99 / 18.30 | 25.31 / 28.58 / 31.58                      |  |
|               | TDE      | 34.48 / 44.89 / 49.20 | 19.07 / 25.61 / 29.13 | 27.24 / 29.46 / 31.03 | 32.59 / 35.70 / 38.05                      |  |
| <b>VCTree</b> | DLFE     | 45.35 / 51.21 / 52.75 | 22.53 / 27.36 / 28.86 | 26.46 / 28.28 / 29.30 | 31.49 / 34.27 / 36.01                      |  |
|               | NICE     | 48.38 / 55.03 / 56.92 | 24.42 / 30.74 / 33.01 | 29.03 / 32.01 / 33.93 | 31.72 / 35.41 / 38.12                      |  |
|               | Reweight | 28.66 / 35.62 / 37.90 | 28.64 / 34.93 / 37.28 | 34.70 / 36.95 / 38.30 | <b>34.41</b> / <b>36.94</b> / <b>38.42</b> |  |
|               | RTPB(CB) | 36.65 / 42.39 / 43.95 | 28.64 / 33.41 / 35.11 | 30.57 / 33.47 / 33.50 | 33.22 / 36.99 / 39.50                      |  |
|               | PKO      | 49.39 / 56.06 / 58.18 | 26.06 / 32.20 / 34.61 | 30.61 / 33.41 / 35.29 | 31.98 / 35.73 / 38.88                      |  |

|        | Mathad   | SGCIs                 |                       |                       |                       |
|--------|----------|-----------------------|-----------------------|-----------------------|-----------------------|
|        | Method   | R@20/50/100           | mR@20/50/100          | IMR@10/20/50          | wIMR@10/20/50         |
|        | PKO      | 7.26 / 10.48 / 12.46  | 11.23 / 16.77 / 20.13 | 20.51 / 22.47 / 23.11 | 16.04 / 17.13 / 17.68 |
|        | Baseline | 36.39 / 39.59 / 40.35 | 7.44 / 9.09 / 9.63    | 7.69 / 8.65 / 9.57    | 13.65 / 15.70 / 17.76 |
| Motifs | TDE      | 20.46 / 26.31 / 28.78 | 9.78 / 13.21 / 15.07  | 13.98 / 15.22 / 16.29 | 16.95 / 18.69 / 20.16 |
|        | DLFE     | 26.63 / 29.79 / 30.61 | 13.23 / 15.66 / 16.48 | 14.75 / 15.82 / 16.57 | 17.96 / 19.65 / 20.85 |
|        | NICE     | 29.48 / 33.06 / 34.05 | 13.63 / 16.67 / 17.88 | 14.82 / 16.76 / 18.02 | 17.00 / 19.35 / 21.07 |
|        | Reweight | 18.67 / 23.49 / 25.47 | 13.49 / 16.75 / 18.34 | 17.82 / 18.69 / 19.23 | 19.13 / 20.38 / 21.14 |
|        | RTPB(CB) | 22.66 / 25.85 / 26.65 | 15.77 / 18.16 / 18.97 | 16.08 / 17.68 / 18.81 | 18.51 / 20.61 / 21.99 |
|        | PKO      | 30.41 / 33.99 / 35.05 | 14.06 / 17.59 / 19.12 | 15.87 / 17.49 / 18.66 | 17.43 / 19.72 / 21.72 |
|        | Baseline | 42.09 / 45.80 / 46.73 | 9.09 / 11.28 / 12.04  | 9.72 / 10.89 / 11.94  | 16.52 / 18.90 / 21.26 |
|        | TDE      | 23.48 / 31.17 / 34.59 | 10.36 / 14.47 / 16.72 | 15.81 / 17.32 / 18.48 | 19.71 / 21.73 / 23.35 |
| VCTree | DLFE     | 30.09 / 33.85 / 34.80 | 16.17 / 19.23 / 20.20 | 18.81 / 20.04 / 20.62 | 21.75 / 23.58 / 24.65 |
|        | NICE     | 33.77 / 37.84 / 38.99 | 16.14 / 20.03 / 21.29 | 17.89 / 19.91 / 21.59 | 20.16 / 22.77 / 24.80 |
|        | Reweight | 20.44 / 24.66 / 25.97 | 18.72 / 22.88 / 24.19 | 22.14 / 23.66 / 24.58 | 22.04 / 23.93 / 25.07 |
|        | RTPB(CB) | 26.06 / 29.63 / 30.61 | 18.67 / 21.41 / 22.52 | 19.64 / 21.41 / 22.63 | 22.04 / 24.41 / 25.93 |
|        | PKO      | 35.01 / 39.10 / 40.40 | 18.43 / 22.27 / 23.74 | 19.88 / 21.72 / 23.01 | 21.14 / 23.77 / 26.09 |