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Abstract

Our starting point is a closer investigation of Bi-Real ResNet [34]. In our investi-
gation of Bi-Real ResNet, we believe that the superiority of Bi-Real ResNet over binary
ResNet requires a different explanation rather than being attributed to the representational
capability. Instead, we study the gradient paths rather than representational capability for
BCNNS. To our best knowledge, this is the first work to consider gradient paths for BC-
NNs. Improving gradient paths is realized by reducing the smallest number of operations
to compute gradient backpropagation for a gradient path. Regarding Bi-Real ResNet and
BinaryDenseNet, the error of BCNNs decreases when the increased shortcuts improve
gradient paths. In addition, we design two architectures by improving gradient paths for
BCNNSs: 1. Improving Gradient Paths for binary ResNet (IGP-ResNet), and 2. Improv-
ing Gradient Paths for binary DenseNet (IGP-DenseNet). Specifically, the Top-1 error
of proposed IGP-ResNet37(41) and IGP-DenseNet51(53) on ImageNet gets lower than
Bi-Real ResNet18(64) and BinaryDenseNet51(32) by 3.29% and 1.41%, respectively,
with almost the same computational complexity.

1 Introduction

Convolutional Neural Networks (CNNs) have become the paradigm of choice for visual
recognition. See [5, 12, 22, 33, 49] for recent often cited references. A significant amount
research has been dedicated to increasing the efficiency of CNNs, including pruning [14,
52], quantization [4, 65], knowledge distillation [29, 43], and efficient network design [17].
Binarization [3, 42, 59] is the most efficient among the different bit-widths quantization
methods. However, it results in a high error increase.

Binarization can be divided into two categories [69]: value approximation and structure
approximation. In value approximation, we preserve the topology of the full-precision CNNs
during the binarization and seek a better local minimum for binarized weights/activations by
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either minimizing the quantization error [2, 13, 31, 37, 39, 44, 68], improving the loss func-
tion of the network [9, 16, 25, 32, 38, 40, 41, 53, 57], or improving the quantization functions
[8, 24, 26, 34, 35, 40, 60]. In structure approximation [1, 34, 67, 69], the architecture of the
binary CNNss is redesigned to approximate the original full-precision CNNs. The structure
approximation focuses on the architecture design principles for BCNNs, which is comple-
mentary to the value approximation. Bi-Real ResNet [34] and BinaryDenseNet [1] increase
shortcuts and show significant error decrease.

A starting point of our work is a closer investigation of Bi-Real ResNet [34]. In our in-
vestigation of Bi-Real ResNet, we believe that the superiority of Bi-Real ResNet over binary
ResNet requires a different explanation rather than being attributed to the representational
capability. Thus, rather than representational capability, other aspects of BCNNs need to be
fully explored.

In this paper, we study gradient paths rather than representational capability for BCNNs.
Improving gradient paths is realized by reducing the smallest number of operations to com-
pute gradient backpropagation for a gradient path. ' Bi-Real ResNet and BinaryDenseNet
have better gradient paths and achieve lower error than binary ResNet and DenseNet. The
error is not reduced when we increase shortcuts further for Bi-Real ResNet and Binary-
DenseNet. In addition, we design two architectures by improving gradient paths for BCNNs:
1. Improving Gradient Paths for binary ResNet (IGP-ResNet), and 2. Improving Gradient
Paths for binary DenseNet (IGP-DenseNet). Specifically, our proposed architectures have
better gradient paths than Bi-Real ResNet and BinaryDenseNet. Improving gradient paths
makes the gradient backpropagate more easily for BCNNs and results in an error decrease.

To our best knowledge, this is the first work to consider gradient paths for BCNNs. To
make the gradient backpropagate more easily, there are efforts of employing a surrogate of
the gradient [8, 11, 26, 34, 40, 60] while considering gradient paths is a new perspective for
the BCNNSs field.

2 Related work

2.1 Compact architecture design

Efficient architecture design has attracted lots of attention from researchers. 3 x 3 convo-
lution has been replaced with 1 x 1 convolution in GoogLeNet [47] and SqueezeNet [20]
to reduce the computational complexity. Group convolution [63], depthwise separable con-
volution [17], shuffle operations [36], and shift operations [54] have been shown to reduce
the computational complexity of traditional convolution. Instead of relying on human ex-
perts, neural architecture search techniques [48, 56] can automatically provide optimized
platform-specific architectures, achieving state-of-the-art efficiency.

2.2 Quantized Convolutional Neural Networks

Low bit-width quantization has been extensively explored in recent work, including reducing
the gradient error [11], improving the loss function of the network [21, 70], and minimizing

!Exactly speaking, improving gradient paths is realized by reducing the smallest number of operations (or the
second smallest number of operations or the third smallest number of operations) to compute gradient backpropa-
gation for a gradient path.
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Figure 1: (a) The representational capability of each layer in BCNNs without shortcuts (b)
The representational capability of each layer in BCNNs with shortcuts.

the quantization error [15]. Using neural architecture search, mixed-precision neural net-
works [10, 30, 55] are developed to find the optimal bit-width (i.e., precision) for weights
and activations of each layer efficiently.

Improving network loss function [9, 16, 25, 32, 38, 40, 41, 53, 57], minimizing the
quantization error [2, 13, 31, 37, 39, 44, 68], and improving the quantization functions
[8, 24, 26, 34, 35, 40, 60] have been studied to provide a better value approximation for BC-
NNs. Channel-wise Interaction based Binary Convolutional Neural Network (CI-BCNN)
[53] uses a reinforcement learning model to mine the interactions between channels and im-
pose channel-wise priors to alleviate the inconsistency of signs in binary feature maps. [37]
obtains significant error decrease by minimizing the discrepancy between the output of the
binary and the corresponding real-valued convolution. The Information Retention Network
(IR-Net) [40] has been proposed to retain the information that consists of the forward ac-
tivations and backward gradients. Regarding structure approximation, [1, 34] adopts more
shortcuts to reduce the error of BCNNS.

3 Improving gradient paths

In this section, we present a closer investigation of Bi-Real ResNet [34]. Considering gra-
dient paths, we clarify the metric to evaluate the gradient path quality. Then, improving
gradient paths can be realized by reducing the smallest number of operations to compute
gradient backpropagation for a gradient path. After that, we analyze the gradient paths for
Bi-Real ResNet and BinaryDenseNet and introduce our proposed architectures by improving
gradient paths for BCNNs. To ensure a fair comparison, we scale the number of base chan-
nels or the growth rate of our proposed architectures to have almost the same computational
complexity as Bi-Real ResNet and BinaryDenseNet.

3.1 Investigation of Bi-Real work

Representational capability analysis As shown in Figure 1, A}, Al  A*!, and A’} re-

fer to the output of the Sign, 1-bit Conv, BatchNorm, and Add, respectively. H, W, h, w,
C, and [ refer to the height and width of feature maps, the height and width of the kernels,
the number of channels, and the layer index. The representational capability of a binary
feature map A,lj is ]R(Af,) = 2HWC In [34], the representational capability of the added
activations (i.e., A"l = AL @ AL*1) in BCNNs with shortcuts is (hwC + 1)2#W€, which
ignores the dependency between AL and A*!. The dependency between AL and AL*! is
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Model [Width [Top—l/Top—S Difficulty  |Shortcuts
Bi-Real ResNet18(64) |b = 32|23.01%/6.24%|D4—13 13
EBi-Real ResNet18(64) |b = 32(23.07%/6.20%|D 4—13 18
Bi-Real ResNet18(64) |b =2 [26.71%/7.46%|D4—13,Dp—>|13
EBi-Real ResNet18(64) |b =2 [26.86%/7.58%|D4—18,Dp—>|18
Bi-Real ResNet18(64) |b =1 [28.48%/8.65%|D;—18,Dp—1|13
EBi-Real ResNet18(64) |b =1 |28.74%/8.88%|D4—18,Dp—1|18
BinaryDenseNet51(32) |b = 32|25.41%/7.30%|D4—s5, 46
EBinaryDenseNet51(32)|b = 32|25.44%/7.27%|D 4—97 92
BinaryDenseNet51(32) |b =2 |26.61%/7.57%|Dy—51,Dp—>|46
EBinaryDenseNet51(32)|b =2 |26.71%/7.60%|D3—97,Dp—>|92
BinaryDenseNet51(32) |b=1 |27.16%/7.77%|D4—51,Dp—1|46
EBinaryDenseNet51(32)|b =1 |27.35%/7.88%|D4—97,Dp—1|92

Table 1: Binary ResNet and DenseNet variants on CIFAR-100.

A1 = BatchNorm(1-bit Conv(Sign(AL))). Therefore, R(A'%}) should be (hwC + 1)HWC
rather than (hwC +1)2#W€_ Thus, the shortcuts will not change the representational capabil-
ity of each layer in the BCNNSs.

Experiments related to increasing shortcuts further For full-precision DCNNSs, there is
a training difficulty caused by their large depth D,. For BCNNS, there is a training difficulty
caused by the large depth D, and a training difficulty caused by the binarization Dj,. In Ta-
ble 1, there is no error decrease when comparing EBi-Real ResNet and EBinaryDenseNet
to Bi-Real ResNet and BinaryDenseNet. These results are not consistent with the represen-
tational capability analysis in [34]. EBi-Real ResNet is obtained by adding more shortcuts
to Bi-Real ResNet using the method in [62], and EBinaryDenseNet is obtained by adding
more shortcuts to BinaryDenseNet following the method in [1]. The Top-1 error of Bi-Real
ResNet will increase slightly with increasing shortcuts, by 0.06% for 32 bit-width, 0.15%
for 2 bit-width, and 0.26% for 1 bit-width. Similarly, the Top-1 error of EBinaryDenseNet51
is slightly higher than that of BinaryDenseNet51 by 0.03% for 32 bit-width, 0.10% for 2
bit-width, and 0.19% for 1 bit-width.

In summary, we present a closer investigation of Bi-Real ResNet [34]. From the analysis
side, [34] ignores the dependency between real-valued and binary activations when calculat-
ing the representational capability of Bi-Real ResNet. From the experiment side, there is no
error decrease when we increase shortcuts further for Bi-Real ResNet and BinaryDenseNet,
which cannot be explained with the representational capability. Thus, we believe that the su-
periority of Bi-Real ResNet over binary ResNet requires a different explanation rather than
being attributed to the representational capability. Thus, other aspects of BCNNs need to be
fully explored.

3.2 Gradient path metric

The gradient path length is adopted as the metric to evaluate the gradient path quality since
the gradient information received by earlier layers from a loss at the end of the model is
noisier than that received by deeper layers [18, 27, 66]. To overcome the training difficulty
caused by the large depth of full-precision DCNNS, research has shown significant improve-
ments by reducing gradient path length to improve gradient backpropagation, such as short-
cut [12, 19], fractal architecture [27], deep supervision [28], and student-teacher paradigm
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Figure 2: Gradient paths in binary ResNet and DenseNet variants. Top left: Gradient paths
in a ResNet block. Top middle: Gradient paths in a Bi-Real ResNet block. Top right: Gra-
dient paths in a BinaryDenseNet block. Bottom left: Gradient paths in a EBi-Real ResNet
block. Bottom middle: Gradient paths in a IGP-ResNet block. Bottom right: Gradient
paths in a IGP-DenseNet block. GP refers to the gradient path. The number of operations
to compute gradient backpropagation for a binary convolution layer is N® in ResNet, N5¥
in Bi-Real ResNet, N22 in BinaryDenseNet, NER in EBi-Real ResNet, N'® in IGP-ResNet,
and N'? in IGP-DenseNet. It is worth noticing that BatchNorm and Relu are omitted.

[43]. A BCNN does not only suffer from the training difficulty caused by their depth, but
also the training difficulty caused by their binarization. Thus, the gradient information noise
in a BCNN is more than that in a full-precision DCNN. Then, we need to improve gradient
paths further to make the gradient backpropagate more easily for BCNNGs.

The gradient information noise accumulates with computing gradient backpropagation
for gradient paths. In particular, the accumulation noise of gradient information Q, for a
gradient path is estimated by the number of operations (i.e., multiplication and addition)
Nops. Q4 = fa(Nops), where f, is a monotonically non-decreasing function. Nppy = L X
(HXW X Ciy X Cous X h xw), where L, H, W, Ci,, Coy, h, and w are the gradient path
length, the height and width of feature maps, the number of input and output channels, the
height and width of the weights of a convolutional layer. Thus, gradient path length can
be adopted as the metric to roughly evaluate gradient path quality, while the number of
operations to compute gradient backpropagation for the gradient path as the metric can make
this evaluation more accurate.

In BCNNSs, we use the smallest number of operations to compute gradient backpropaga-
tion for a gradient path as the metric to evaluate the gradient path quality. A smaller number
of operations for a gradient path indicates less accumulation of gradient information noise.
Thus, improving gradient paths can be realized by reducing the smallest number of opera-
tions to compute gradient backpropagation for a gradient path. In particular, Ny, Np,q, and
N3, refer to the smallest, second smallest, and third smallest number of operations for a gra-
dient path. Also, L1, Lo,g, and L3, represent the shortest, second shortest, and third shortest
gradient path length, which is listed. A full-precision layer accumulates much less gradient
information noise than a binary convolutional layer. Thus, we consider binary convolutional
layers and ignore full-precision layers.
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3.3 Design architectures by improving gradient paths

We illustrate gradient paths in Figure 2 and evaluation of gradient path quality in Table 2,
where we take binary model blocks with a depth of two layers as an example, which will
work for other network architecture configurations.

ResNet vs Bi-Real ResNet vs EBi-Real ResNet N is 0 for Bi-Real ResNet and binary
ResNet blocks. Ny, is N2R for Bi-Real ResNet and 2 x N® for binary ResNet blocks, where
NBR = NR < 2 x NR. The gradient path quality for Bi-Real ResNet block is better than that
for binary ResNet block. Then, it is reasonable that the error of Bi-Real ResNet is lower than
that of binary ResNet. Niy, Nong, and Na,q is 0, NBR, and 2 x NBR for Bi-Real ResNet and
EBi-Real ResNet blocks, where N2X = NER_ Thus, increasing residual connections further
for Bi-Real ResNet cannot improve gradient paths and decrease error. Evaluating gradient
path quality for BinaryDenseNet variants is in the appendix .

Improving gradient paths with Ny, N>,4, and N3,; Improving gradient paths can be
realized by reducing the smallest number of operations to compute gradient backpropagation
for a gradient path. We consider Ny, Na,g, and N3, to design architectures for BCNNs. For
Nist, we can adopt shortcuts to set Nii; = 0. For Ny,4, Long = 1 and improving gradient
paths in an IGP-ResNet block is realized when N'R < NBR_ To ensure a fair comparison,
we set the computational complexity of different model blocks to be roughly the same, i.e.,
M x N'R ~ 2 x NBR. M represents the number of convolutional layers in an IGP-ResNet
block. Then, M > 2. For example, we have experimented with M = 3 for IGP-ResNet21(53),
M =7 for IGP-ResNet37(41), and M = 15 for IGP-ResNet69(31), which consistently shows
lower error than Bi-Real ResNet18(64). Diagrams of IGP-ResNet and IGP-DenseNet with
other network architecture configurations are in appendix >.

Bi-Real ResNet vs IGP-ResNet N is O for Bi-Real ResNet and IGP-ResNet blocks. N,z
is NR for the Bi-Real ResNet and N’ for IGP-ResNet blocks. To ensure a fair comparison,
we set the computational complexity of different model blocks to be roughly the same, i.e.,
3x N'R =2 x NBR. Thus, NBR > N'R and IGP-ResNet block has better gradient paths than
Bi-Real ResNet block.

BinaryDenseNet vs IGP-DenseNet N, is O for BinaryDenseNet and IGP-DenseNet blocks.
Nayg is NBP(NBP) for BinaryDenseNet and N!P for IGP-DenseNet block. To ensure a fair
comparison, we set the computational complexity of different model blocks to be roughly
the same, i.e., NBP + NBP ~ 2 x NIP 4 NIP. Thus, NBP ~ N3P ~ NIP. N3, is NBP + NBP
for BinaryDenseNet and NfD +N£D for IGP-DenseNet block. NfD +NfD > N{D +N£D and
the gradient paths in IGP-DenseNet are better than those in BinaryDenseNet.

4 Experimental results

Compared with Bi-Real ResNet and BinaryDenseNet on ImageNet and CIFAR-100, our
proposed architectures with various network architecture configurations consistently show

2This sentence is a message to the reviewers only.
3This sentence is a message to the reviewers only.



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 7

Block ‘ Nig |Llst ‘ Nond ‘Lan ‘ N3pq ‘L3rd ‘
ResNet 0[0 2x NR|2 —]-

Bi-Real ResNet |0]|0 NBR|1 —|-

Bi-Real ResNet | 0[0 NBE[1 2 x NBE|2
EBi-Real ResNet | 0|0 NER|1 2 x NER|2
Bi-Real ResNet | 0[0 NBR|1 |-
IGP-ResNet 0[0 NIR|1 —|-
BinaryDenseNet |0]|0 NED(NBD)|1|NPP + NEP|2
IGP-DenseNet [ 0[0 NiP|1 NP+ NP2

Table 2: Evaluation of gradient path quality for binary model blocks. (-|-) refers to the
smallest number of operations to compute gradient backpropagation for a gradient path and
the shortest gradient path length. For example, 0|0 indicates that the smallest operation
number and the shortest gradient path length for a binary model block are 0. If Ny is the
same for two different model blocks, we compare Ny,;. Similar, if Njg and N,,, are the
same, we compare N3,4.

significant performance improvement. In addition, we demonstrate the essential role of the
gradient path that requires the smallest number of operations to compute gradient backprop-
agation, which supports that the key of our proposal is to design architectures by improving
gradient paths for BCNNs. Experimental details are in the appendix .

4.1 Experimental results on ImageNet

ResNet variants on ImageNet As shown in Table 3, we present the experimental results of
IGP-ResNet on ImageNet. Our IGP-ResNet variants with various network architecture con-
figurations, including IGP-ResNet21(53), IGP-ResNet37(41), and IGP-ResNet69(31), con-
sistently achieve significant performance improvement compared with Bi-Real ResNet18.
In particular, IGP-ResNet37(41) and IGP-ResNet41(48) reduce the Top-1 error by 3.29%
and 1.12% compared with Bi-Real ResNet18(64) and Bi-Real ResNet34(64), respectively.
Regarding the computational complexity, IGP-ResNet37(41) increases the run-time memory
size by 10.44MB but saves the number of parameters by 0.94Mbit and the number of Flops
by 0.36 x 10 (21.95%) compared with Bi-Real ResNet18(64). Similarly, the number of pa-
rameters and the number of Flops required for our proposed IGP-ResNet41(48) are 0.67Mbit
and 0.29 x 108 less than those needed for Bi-Real ResNet34(64).

DenseNet variants on ImageNet As shown in Table 3, we present the experimental re-
sults of our IGP-DenseNet on ImageNet. The Top-1 error of IGP-DenseNet51(53) and IGP-
DenseNet69(48) is 1.41% and 1.06% lower than those of BinaryDenseNet51(32) and Bina-
ryDenseNet69(32), respectively. In terms of the computational complexity, IGP-DenseNet51(53)
and IGP-DenseNet69(48) require 0.27 x 108 Flops and 0.24 x 10® Flops less compared with
BinaryDenseNet51(32) and BinaryDenseNet69(32), respectively, while they save the num-
ber of parameters by 0.37Mbit and 0.37Mbit, respectively, and decrease the run-time mem-
ory size by 52.98MB and 77.07MB, respectively.

“4This sentence is a message to the reviewers only.
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Model [ Top-1 Top-5 Storage Computation Run-time memory
Bi-Real ResNet18(64) 40.42% | 18.29% | 33.18Mbit | 1.64 x lOSFlops 154.14MB
IGP-ResNet21(53) 37.58% | 16.06% | 32.63Mbit | 1.46 x 108Flops 170.20MB
IGP-ResNet37(41) 37.13% | 15.63% | 32.24Mbit | 1.28 x 108Flops 164.58MB
IGP-ResNet69(31) 37.66% | 15.77% | 32.16Mbit | 1.14 x 108F10ps 149.32MB
Bi-Real ResNet34(64) 36.74% | 15.36% | 43.28Mbit | 1.93 x IOSFlops 154.14MB
IGP-ResNet41(48) 35.62% | 14.53% | 42.61Mbit | 1.64 x 108Flops 154.14MB
IGP-ResNet77(35) 36.66% | 15.07% | 41.53Mbit | 1.44 x 108F10ps 140.49MB
BinaryDenseNet51(32) | 38.14% | 16.80% | 34.80Mbit | 2.70 x lOgFlops 359.66MB
IGP-DenseNet51(53) 36.73% | 15.54% | 34.53Mbit | 2.97 x 108F10ps 306.68MB
BinaryDenseNet69(32) | 36.26% | 15.24% | 41.95Mbit | 2.82 x 108Flops 359.66MB
IGP-DenseNet69(48) 35.20% | 14.59% | 41.52Mbit | 3.06 x 108F10ps 282.59MB

Table 3: Binary ResNet and DenseNet variants on ImageNet. There are four blocks in this
Table. First block: ResNet18(64) and IGP-ResNet variants to compare with ResNet18(64).
Second block: ResNet34(64) and IGP-ResNet variants to compare with ResNet34(64).
Third block: BinaryDenseNet51(32) and IGP-DenseNet variants to compare with Bina-
ryDenseNet51(32). Fourth block: BinaryDenseNet69(32) and IGP-DenseNet variants to
compare with BinaryDenseNet69(32).

4.2 Comparison to State-of-the-Art

In Table 4, we compare with state-of-the-art BCNNs on ImageNet. Except for the FULW-
ResNet18 [57], ProxyResNet18 [13], Real-to-bin ResNet18 [37], ReActNet-ResNet18 [35],
and DIR-Net’-ResNet18 [41], the Top-1 error of IGP-ResNet37(41), IGP-ResNet41(48),
IGP-DenseNet51(53), and IGP-DenseNet69(48) achieve 37.13%, 35.62%, 36.73%, and 35.20%,
respectively, and are lower other binary ResNet and DenseNet variants by a large margin.

Here we have the following clarifications for the fact that the error of our proposed ar-
chitectures does not achieve the lowest among all the references.

FULW-ResNet18 [57] explores the role of W in training besides acting as a latent vari-
able. ProxyResNet18 [13] reduces the weights quantization error by introducing an appropri-
ate proxy matrix. Real-to-bin ResNet18 [37] minimizes the discrepancy between the output
of the binary and the corresponding real-valued convolution. ReActNet-ResNet18 [35] pro-
poses to generalize the traditional Sign and PreLU functions, denoted as RSign and RPReLLU
for the respective generalized functions. DIR-Net?-ResNet18 [41] introduces a novel DIR-
Net that retains the information during the forward/backward propagation of BNNs. All
these references [13, 35, 37, 41, 57] belong to value approximation since they preserve the
topology of the full-precision CNNs during the binarization and try to seek a better local
minimum for binarized weights/activations. But, our work is about architecture design and
belongs to structure approximation, which is complementary to the value approximation.
Thus, it is reasonable to expect that we can improve the performance of BCNNs in these
references further with our proposed architectures. Given a stronger BCNN baseline trained
with a more advanced value approximation from these references, the error of our proposed
architectures can decrease and achieve better performance.

Besides, our proposed architectures outperform all the references about the architecture
design, even automated BNAS-E [23]. Almost all our experiments use the baseline of Bi-
Real ResNet and BinaryDenseNet to show the effectiveness of our proposed architecture
design principle since improving gradient paths for Bi-Real ResNet and BinaryDenseNet
indeed decrease their error.
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Model [Top—l/Top—S Storage  |Computation

BNN ResNet18#* [7] 57.80%/30.80%|27.9Mbit ]0.14 x 10°Flops
XNOR ResNet18#* [42] 48.80%/26.80%|28.0Mbit |0.14 x 10°Flops
S2-Bi-Real ResNet18* [45]  |48.76%/24.11%(33.2Mbit [0.16 x 10°Flops

Bin ResNet18#* [58] 45.80%/22.10%|27.9Mbit |0.14 x 10°Flops
TBN-ResNet18#* [50] 44.40%/25.80%|27.9Mbit |0.17 x 10°Flops
Bi-Real ResNet18* [34] 43.60%/20.50%|33.2Mbit |0.16 x 10°Flops

CI-Net ResNet18#* [53] 43.30%/19.90%|27.9Mbit |0.14 x 10°Flops
XNOR-Net++ ResNet18#* [2](42.90%/20.10%)|28.0Mbit |0.14 x 10°Flops

IR-ResNet18* [40] 41.90%/20.00%|33.1Mbit |0.16 x 10°Flops
BNAS-E* [23] 41.24%119.39%|33.1Mbit |0.16 x 10°Flops
Bi-Real ResNet18(64) [34]  [40.42%/18.29%|33.2Mbit [0.16 x 10°Flops
Si-ResNet18* [51] 40.30%/18.20%)|33.2Mbit |0.16 x 10°Flops
CI-Net ResNet18* [53] 40.10%/17.80%|33.2Mbit |0.16 x 10°Flops
RBNN-ResNet18* [31] 40.10%/18.10%|33.2Mbit |0.16 x 10°Flops
FT-ResNet18* [46] 39.80%/— 33.2Mbit [0.16 x 10°Flops
DGRL-ResNet18 (K=1)* [61]|39.55%/— 33.2Mbit {0.16 x 10°Flops

UaBNN-ResNet18* [64] 39.40%/17.80%|33.2Mbit |0.16 x 109F10ps
BinaryDuo ResNet18* [24]  |39.10%/17.40%|33.2Mbit |0.16 X 109Flops
ReActNet-18 (BN-Free)* [6] [38.90%/— 33.2Mbit [0.16 x 109Flops
SA-BNN-ResNet18%* [32] 38.30%/17.20%|33.2Mbit |0.16 x 109F10ps
IA-BNN-ResNet18* [25] 37.20%/15.70%|33.2Mbit |0.16 x 109F10ps

IGP-ResNet37(41) 37.13%/15.63%|32.2Mbit |0.13 x 109Flops
FULW-ResNet18* [57] 36.60%/15.40%|33.2Mbit |0.16 x 109F10ps
ProxyResNet18* [13] 36.30%/15.20%(33.2Mbit |0.16 x 10°Flops
Real-to-bin ResNet18*[37] 34.60%/13.80% |33.2Mbit |0.16 x 109Flops
ReActNet-ResNet18* [35] 34.10%/— 33.2Mbit [0.16 x lOgFlops
DIR-Net?-ResNet18* [41] 33.90%/13.60% (33.2Mbit |0.16 x 10°Flops
TBN-ResNet34#* [50] 41.80%/19.00%|38.0Mbit |0.23 x 109F10ps
Bi-Real ResNet34* [34] 37.80%/16.10%|43.3Mbit |0.19 x 10°Flops
Bi-Real ResNet34(64) [34] 36.74%115.36%|43.3Mbit |0.19 x 10°Flops
IGP-ResNet41(48) 35.62%/14.53%|42.6Mbit (0.16 X 109Flops

BinaryDenseNet51(32)* [1]  [39.30%/17.60%|34.8Mbit |0.27 x 10°Flops
BinaryDenseNet51(32) [1] 38.14%/16.80%|34.8Mbit |0.27 x IOQFlops
IGP-DenseNet51(53) 36.73%/15.54% |34.5Mbit |0.30 x 10°Flops
BinaryDenseNet69(32)* [1]  |37.50%/16.10%|42.0Mbit |0.28 x 109Flops
BinaryDenseNet69(32) [1] 36.26%/15.24%|42.0Mbit |0.28 x lOgFlops
IGP-DenseNet69(48) 35.20%/14.59%|41.5Mbit |0.31 x 10°Flops
Full-precision ResNet18* 30.70%/10.80%|374.1Mbit|1.81 x 10°Flops
Full-precision ResNet34* 26.80%/8.60% |697.3Mbit|3.66 x 10°Flops

Table 4: Comparison with state-of-the-art methods on ImageNet. * refers to the baseline
from the published papers. # indicates the downsampling layers are binarized.

5 Conclusion

We present a closer investigation of Bi-Real ResNet [34] and believe that the superiority
of Bi-Real ResNet over binary ResNet requires a different explanation rather than being
attributed to the representational capability. Instead, we study gradient paths rather than rep-
resentational capability for BCNNs. Improving gradient paths is realized by reducing the
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smallest number of operations to compute gradient backpropagation for a gradient path. Un-
der a given computational complexity budget, the Top-1 error of our proposed architectures
is lower than the state-of-the-art Bi-Real ResNet18(64) by 3.29%, Bi-Real ResNet34(64)
by 1.12%, BinaryDenseNet51(32) by 1.41%, and BinaryDenseNet69(32) by 1.06% on Ima-
geNet classification.

This work was carried out on the Dutch national e-infrastructure with the support of
SURF Cooperative.
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