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Abstract

Our starting point is a closer investigation of Bi-Real ResNet [1]. In our investigation of Bi-Real

ResNet, we believe that the superiority of Bi-Real ResNet over binary ResNet requires a different

explanation rather than being attributed to the representational capability. Instead, we study the

gradient paths rather than representational capability for BCNNs. To our best knowledge, this

is the first work to consider gradient paths for BCNNs. Improving gradient paths is realized by

reducing the smallest number of operations to compute gradient backpropagation for a gradient

path. Regarding Bi-Real ResNet and BinaryDenseNet, the error of BCNNs decreases when the

increased shortcuts improve gradient paths. In addition, we design two architectures by improv-

ing gradient paths for BCNNs: 1. Improving Gradient Paths for binary ResNet (IGP-ResNet), and

2. Improving Gradient Paths for binary DenseNet (IGP-DenseNet). Specifically, the Top-1 error

of proposed IGP-ResNet37(41) and IGP-DenseNet51(53) on ImageNet gets lower than Bi-Real

ResNet18(64) and BinaryDenseNet51(32) by 3.29% and 1.41%, respectively, with almost the same

computational complexity.

Introduction

Convolutional Neural Networks (CNNs) have become the paradigm of choice for visual recog-

nition. A significant amount research has been dedicated to increasing the efficiency of CNNs,

including pruning, quantization, knowledge distillation, and efficient network design. Binarization

is the most efficient among the different bit-widths quantization methods. However, it results

in a high error increase. To our best knowledge, this is the first work to consider gradient paths

for BCNNs. To make the gradient backpropagate more easily, there are efforts of employing a

surrogate of the gradient while considering gradient paths is a new perspective for the BCNNs

field.

Investigation of Bi-Realwork

As shown in Figure 1, Al
b, Al

m, Al+1
r , and Al+1

add refer to the output of the Sign, 1-bit Conv, Batch-

Norm, and Add, respectively. H , W , h, w, C , and l refer to the height and width of feature maps,

the height and width of the kernels, the number of channels, and the layer index. The representa-

tional capability of a binary feature mapAl
b isR(Al

b) = 2HWC . In [1], the representational capability

of the added activations (i.e., Al+1
add = Al

r ⊕ Al+1
r ) in BCNNs with shortcuts is (hwC + 1)2HWC ,

which ignores the dependency between Al
r and Al+1

r . The dependency between Al
r and Al+1

r is

Al+1
r = BatchNorm(1-bit Conv(Sign(Al

r))). Therefore, R(Al+1
add) should be (hwC + 1)HWC rather

than (hwC + 1)2HWC . Thus, the shortcuts will not change the representational capability of each

layer in the BCNNs.
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Figure 1. (a) The representational capability of each layer in BCNNs without shortcuts (b) The representational

capability of each layer in BCNNs with shortcuts.

Gradient path metric

In BCNNs, we use the smallest number of operations to compute gradient backpropagation for a

gradient path as the metric to evaluate the gradient path quality. A smaller number of operations

for a gradient path indicates less accumulation of gradient information noise. Thus, improving

gradient paths can be realized by reducing the smallest number of operations to compute gradient

backpropagation for a gradient path. In particular, N1st, N2nd, and N3rd refer to the smallest,

second smallest, and third smallest number of operations for a gradient path. Also, L1st, L2nd,

and L3rd represent the shortest, second shortest, and third shortest gradient path length, which

is listed. A full-precision layer accumulates much less gradient information noise than a binary

convolutional layer. Thus, we consider binary convolutional layers and ignore full-precision layers.

Comparison to State-of-the-Art

In Table 1, we compare with state-of-the-art BCNNs on ImageNet. Except for the

FULW-ResNet18, ProxyResNet18, Real-to-bin ResNet18, ReActNet-ResNet18, and DIR-Net2-
ResNet18, the Top-1 error of IGP-ResNet37(41), IGP-ResNet41(48), IGP-DenseNet51(53), and

IGP-DenseNet69(48) achieve 37.13%, 35.62%, 36.73%, and 35.20%, respectively, and are lower

other binary ResNet and DenseNet variants by a large margin.

Here we have the following clarifications for the fact that the error of our proposed architectures

does not achieve the lowest among all the references.

FULW-ResNet18 explores the role of W in training besides acting as a latent variable. Prox-

yResNet18 reduces the weights quantization error by introducing an appropriate proxy matrix.

Real-to-bin ResNet18 minimizes the discrepancy between the output of the binary and the cor-

responding real-valued convolution. ReActNet-ResNet18 proposes to generalize the traditional

Sign and PreLU functions, denoted as RSign and RPReLU for the respective generalized func-

tions. DIR-Net2-ResNet18 introduces a novel DIR-Net that retains the information during the

forward/backward propagation of BNNs. All these references belong to value approximation since

they preserve the topology of the full-precision CNNs during the binarization and try to seek a

better local minimum for binarized weights/activations. But, our work is about architecture de-

sign and belongs to structure approximation, which is complementary to the value approximation.

Thus, it is reasonable to expect that we can improve the performance of BCNNs in these refer-

ences further with our proposed architectures. Given a stronger BCNN baseline trained with a

more advanced value approximation from these references, the error of our proposed architec-

tures can decrease and achieve better performance.

Besides, our proposed architectures outperform all the references about the architecture design,

even automated BNAS-E. Almost all our experiments use the baseline of Bi-Real ResNet and

BinaryDenseNet to show the effectiveness of our proposed architecture design principle since

improving gradient paths for Bi-Real ResNet and BinaryDenseNet indeed decrease their error.

Model Top-1/Top-5 Storage Computation

BNN ResNet18#* 57.80%/30.80% 27.9Mbit 0.14 × 109Flops
XNOR ResNet18#* 48.80%/26.80% 28.0Mbit 0.14 × 109Flops
S2-Bi-Real ResNet18* 48.76%/24.11% 33.2Mbit 0.16 × 109Flops
Bin ResNet18#* 45.80%/22.10% 27.9Mbit 0.14 × 109Flops
TBN-ResNet18#* 44.40%/25.80% 27.9Mbit 0.17 × 109Flops
Bi-Real ResNet18* 43.60%/20.50% 33.2Mbit 0.16 × 109Flops
CI-Net ResNet18#* 43.30%/19.90% 27.9Mbit 0.14 × 109Flops
XNOR-Net++ ResNet18#* 42.90%/20.10% 28.0Mbit 0.14 × 109Flops
IR-ResNet18* 41.90%/20.00% 33.1Mbit 0.16 × 109Flops
BNAS-E* 41.24%/19.39% 33.1Mbit 0.16 × 109Flops
Bi-Real ResNet18(64) 40.42%/18.29% 33.2Mbit 0.16 × 109Flops
Si-ResNet18* 40.30%/18.20% 33.2Mbit 0.16 × 109Flops
CI-Net ResNet18* 40.10%/17.80% 33.2Mbit 0.16 × 109Flops
RBNN-ResNet18* 40.10%/18.10% 33.2Mbit 0.16 × 109Flops
FT-ResNet18* 39.80%/− 33.2Mbit 0.16 × 109Flops
DGRL-ResNet18 (K=1)* 39.55%/− 33.2Mbit 0.16 × 109Flops
UaBNN-ResNet18* 39.40%/17.80% 33.2Mbit 0.16 × 109Flops
BinaryDuo ResNet18* 39.10%/17.40% 33.2Mbit 0.16 × 109Flops
ReActNet-18 (BN-Free)* 38.90%/− 33.2Mbit 0.16 × 109Flops
SA-BNN-ResNet18* 38.30%/17.20% 33.2Mbit 0.16 × 109Flops
IA-BNN-ResNet18* 37.20%/15.70% 33.2Mbit 0.16 × 109Flops
IGP-ResNet37(41) 37.13%/15.63% 32.2Mbit 0.13 × 109Flops
FULW-ResNet18* 36.60%/15.40% 33.2Mbit 0.16 × 109Flops
ProxyResNet18* 36.30%/15.20% 33.2Mbit 0.16 × 109Flops
Real-to-bin ResNet18* 34.60%/13.80% 33.2Mbit 0.16 × 109Flops
ReActNet-ResNet18* 34.10%/− 33.2Mbit 0.16 × 109Flops
DIR-Net2-ResNet18* 33.90%/13.60% 33.2Mbit 0.16 × 109Flops

TBN-ResNet34#* 41.80%/19.00% 38.0Mbit 0.23 × 109Flops
Bi-Real ResNet34* 37.80%/16.10% 43.3Mbit 0.19 × 109Flops
Bi-Real ResNet34(64) 36.74%/15.36% 43.3Mbit 0.19 × 109Flops
IGP-ResNet41(48) 35.62%/14.53% 42.6Mbit 0.16 × 109Flops

BinaryDenseNet51(32)* 39.30%/17.60% 34.8Mbit 0.27 × 109Flops
BinaryDenseNet51(32) 38.14%/16.80% 34.8Mbit 0.27 × 109Flops
IGP-DenseNet51(53) 36.73%/15.54% 34.5Mbit 0.30 × 109Flops

BinaryDenseNet69(32)* 37.50%/16.10% 42.0Mbit 0.28 × 109Flops
BinaryDenseNet69(32) 36.26%/15.24% 42.0Mbit 0.28 × 109Flops
IGP-DenseNet69(48) 35.20%/14.59% 41.5Mbit 0.31 × 109Flops

Full-precision ResNet18* 30.70%/10.80% 374.1Mbit 1.81 × 109Flops
Full-precision ResNet34* 26.80%/8.60% 697.3Mbit 3.66 × 109Flops

Table 1. Comparison with state-of-the-art methods on ImageNet. * refers to the baseline from the published

papers. # indicates the downsampling layers are binarized.

Design architectures by improving gradient paths

We illustrate gradient paths in Figure 2, where we take binary model blocks with a depth of two

layers as an example, which will work for other network architecture configurations.

ResNet vs Bi-Real ResNet vs EBi-Real ResNet N1st is 0 for Bi-Real ResNet and binary ResNet

blocks. N2nd is NBR for Bi-Real ResNet and 2 × NR for binary ResNet blocks, where NBR =
NR < 2 × NR. The gradient path quality for Bi-Real ResNet block is better than that for binary

ResNet block. Then, it is reasonable that the error of Bi-Real ResNet is lower than that of binary

ResNet. N1st, N2nd, and N3rd is 0, NBR, and 2 × NBR for Bi-Real ResNet and EBi-Real ResNet

blocks, where NBR = NER. Thus, increasing residual connections further for Bi-Real ResNet

cannot improve gradient paths and decrease error.

Improving gradient paths with N1st, N2nd, and N3rd Improving gradient paths can be realized by

reducing the smallest number of operations to compute gradient backpropagation for a gradient

path. We considerN1st,N2nd, andN3rd to design architectures for BCNNs. ForN1st, we can adopt

shortcuts to setN1st = 0. ForN2nd, L2nd = 1 and improving gradient paths in an IGP-ResNet block
is realized when NIR < NBR. To ensure a fair comparison, we set the computational complexity

of different model blocks to be roughly the same, i.e., M × NIR ≈ 2 × NBR. M represents the

number of convolutional layers in an IGP-ResNet block. Then, M > 2. For example, we have

experimented with M = 3 for IGP-ResNet21(53), M = 7 for IGP-ResNet37(41), and M = 15 for

IGP-ResNet69(31), which consistently shows lower error than Bi-Real ResNet18(64).

Bi-Real ResNet vs IGP-ResNet N1st is 0 for Bi-Real ResNet and IGP-ResNet blocks. N2nd is NBR

for the Bi-Real ResNet and NIR for IGP-ResNet blocks. To ensure a fair comparison, we set

the computational complexity of different model blocks to be roughly the same, i.e., 3 × NIR ≈
2×NBR. Thus, NBR > NIR and IGP-ResNet block has better gradient paths than Bi-Real ResNet

block.

BinaryDenseNet vs IGP-DenseNet N1st is 0 for BinaryDenseNet and IGP-DenseNet blocks. N2nd
is NBD

1 (NBD
2 ) for BinaryDenseNet and NID

1 for IGP-DenseNet block. To ensure a fair compari-

son, we set the computational complexity of different model blocks to be roughly the same, i.e.,

NBD
1 + NBD

2 ≈ 2 × NID
1 + NID

2 . Thus, NBD
1 ≈ NBD

2 ≈ NID
1 . N3rd is NBD

1 + NBD
2 for Bi-

naryDenseNet and NID
1 + NID

2 for IGP-DenseNet block. NBD
1 + NBD

2 > NID
1 + NID

2 and the

gradient paths in IGP-DenseNet are better than those in BinaryDenseNet.
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Figure 2. Gradient paths in binary ResNet and DenseNet variants. Top left: Gradient paths in a ResNet block. Top

middle: Gradient paths in a Bi-Real ResNet block. Top right: Gradient paths in a BinaryDenseNet block. Bottom

left: Gradient paths in a EBi-Real ResNet block. Bottom middle: Gradient paths in a IGP-ResNet block. Bottom

right: Gradient paths in a IGP-DenseNet block. GP refers to the gradient path. The number of operations to

compute gradient backpropagation for a binary convolution layer is NR in ResNet, NBR in Bi-Real ResNet, NBD in

BinaryDenseNet, NER in EBi-Real ResNet, N IR in IGP-ResNet, and N ID in IGP-DenseNet. It is worth noticing that

BatchNorm and Relu are omitted.

Conclusion

We present a closer investigation of Bi-Real ResNet and believe that the superiority of Bi-Real

ResNet over binary ResNet requires a different explanation rather than being attributed to the

representational capability. Instead, we study gradient paths rather than representational capabil-

ity for BCNNs. Improving gradient paths is realized by reducing the smallest number of operations

to compute gradient backpropagation for a gradient path.
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