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Abstract

This file is the appendix for Improving Gradient Paths for Binary Convolutional Neu-
ral Networks. The first section shows the gradient paths in BinaryDenseNet variants. In
the second section, we illustrate the digrams of our proposed architectures. The third
section presents the binarization function. In the fourth section, we describe the experi-
mental details.

1 Gradient paths in binary DenseNet variants

Block N1st |L1st N2nd |L2nd N3rd |L3rd

DenseNet 0|0 ND|1 −|−
BinaryDenseNet 0|0 NBD

1 |1 −|−
BinaryDenseNet 0|0 NBD

1 |1 −|−
EBinaryDenseNet 0|0 NED

1 |1 −|−

Table 1: Evaluation of gradient path quality for binary model blocks. (·|·) refers to the
smallest number of operations to compute gradient backpropagation for a gradient path and
the shortest gradient path length. For example, 0|0 indicates that the smallest operation
number and the shortest gradient path length for a binary model block are 0. If N1st is the
same for two different model blocks, we compare N2nd . Similar, if N1st and N2nd are the
same, we compare N3rd . NBD

1 ≈ NBD
2 . NED

1 ≈ NED
2 ≈ NED

3 ≈ NED
4 .

We present the gradient paths in the blocks of the binary DenseNet variants in Figure 1
and the evaluation of gradient path quality in Table 1.
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Convolution

Concatenation

Figure 1: Gradient paths in binary DenseNet variants. Top left: Gradient paths in DenseNet
block. Top right: Gradient paths in BinaryDenseNet block. Bottom: Gradient paths in
EBinaryDenseNet block. GP refers to gradient path. The number of operations to compute
gradient backpropagation for a binary convolution layer is ND in DenseNet, NBD in Binary-
DenseNet, and NED in EBinaryDenseNet, respectively.

1.1 DenseNet vs BinaryDenseNet.

N1st is 0 for BinaryDenseNet and binary DenseNet blocks. N2nd is NBD
1 for BinaryDenseNet

and ND for binary DenseNet blocks. we set the computational complexity of different model
blocks to be roughly the same, i.e., ND ≈ NBD

1 +NBD
2 ≈ NED

1 +NED
2 +NED

3 +NED
4 . NBD

1 ≈
NBD

2 . NED
1 ≈ NED

2 ≈ NED
3 ≈ NED

4 . Then, NBD
1 < ND. Thus, the gradient path quality for

BinaryDenseNet block is better than that for binary DenseNet block. Then, it is reasonable
that the error of BinaryDenseNet is lower than that of binary DenseNet.

1.2 BinaryDenseNet vs EBinaryDenseNet.

N1st is 0 for BinaryDenseNet and EBinaryDenseNet blocks. N2nd is NBD
1 for BinaryDenseNet

and NED
1 for EBinaryDenseNet blocks. Then, NED

1 < NBD
1 . Thus, increasing dense connec-

tions further for BinaryDenseNet improves gradient paths. However, the error of EBina-
ryDenseNet is not lower than BinaryDenseNet. We speculate that the trianing difficulty
caused by depth in EBinaryDenseNet is larger than that in BinaryDenseNet, which leads
to the fact that EBinaryDenseNet does have better gradient paths and does not have lower
error than BinaryDenseNet. In our work, we consider gradient paths for BCNNs and have
some assumptions. In particular, we assume that the training difficulties of BCNNs remain
unchanged when we design architectures by improving gradient paths. For example, the
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training difficulty caused by depth remains unchanged if the depth of the model (Here we
consider binary convolutional layers and ignore full-precision layers.) does not double, i.e.,
Dd=18 ≈ Dd=l when l < 34 for ResNet18 and Dd=51 ≈ Dd=l when l < 97 for DenseNet51.
The depth of EBinaryDenseNet is twice as large as that of BinaryDenseNet, and the trianing
difficulty caused by depth in EBinaryDenseNet is larger than that in BinaryDenseNet, i.e.,
Dd=51 < Dd=91 for DenseNet51.

Convolution

Concatenation

Summation

Figure 2: The diagrams of the blocks of proposed architectures with M = 7. Left: The block
description of IGP-ResNet. Right: The block description of IGP-DenseNet.

2 Proposed architectures
In this section, we present the architectures of IGP-ResNet and IGP-DenseNet blocks. Then,
we show the overview of our proposed architectures.

Proposed architectures with other network architecture configurations. The IGP-ResNet
block architecture is shown to the left of Figure 2, where M = 7. M = 7 indicates that the
number of columns and depth is 3 and 4, respectively. Similarly, the IGP-DenseNet block
architecture is shown to the right of Figure 2, where M = 7.

The IGP-ResNet block architecture is shown to the left of Figure 3, where M = 15.
M = 15 indicates that the number of columns and depth is 4 and 8, respectively. Similarly,
the IGP-DenseNet block architecture is shown to the right of Figure 3, where M = 15.

Overview of proposed architectures. As shown in Figure 4, we describe the overall view
of our proposed architectures with the input images of size 224× 224. To ensure a fair
comparison when we build our proposed architectures, we scale the number of base channels
or the growth rate of our proposed architectures to have almost the same computational
complexity as Bi-Real ResNet and BinaryDenseNet.

The left two columns are the IGP-ResNet, i.e., IGP-ResNet21(53) and IGP-ResNet41(48),
respectively. 21 and 41 represent the depths of proposed architectures, while 53 and 48 re-
fer to their base number of channels, which are scaled to match the computational com-
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Figure 3: The diagrams of the blocks of proposed architectures with M = 15. Left: The
block description of IGP-ResNet. Right: The block description of IGP-DenseNet.

plexity of ResNet18 and ResNet34 after binarization, respectively. Similarly, we build
IGP-DenseNet51(53) and IGP-DenseNet69(48) to match the computational complexity of
DenseNet51(32) and DenseNet69(32) after binarization [2], respectively. 51 and 69 refer to
the depths of proposed architectures, while 53 and 48 refer to the growth rate after scaling.
We calculate the model depth with the criteria that every convolutional layer is recognized
as one layer, which is different from that in [2] (i.e., every block is recognized as a layer). To
ensure consistency, BinaryDenseNet28(64) and BinaryDenseNet37(64) in [2] are renamed
as BinaryDenseNet51(32) and BinaryDenseNet69(32) in our paper. The right two columns
present the composition of the initial layers, transition block, and final layers in proposed
architectures.

3 Binarization function

We describe the binarization function that we adopt for our proposed architectures, including
the binarization of weights [7] and activations [6].

Binarization of weights. The forward propagation and backward propagation to binarize
the weights are calculated as follows. E and L refer to the mean of the absolute value of the
weights and the loss of the model, respectively. W and Wb represent the full precision weights
and binary weights. We adopt the straight-through estimator (STE) [1] to approximate the
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Figure 4: The building blocks and an exemplary network structure of our proposed archi-
tectures. Left two columns: The IGP-ResNet uses a network architecture configuration of
M = 7. In an IGP-ResNet block, there are 3 columns and 4 convolutional layers. Middel
two columns: The IGP-DenseNet uses a network architecture configuration of M = 3. In an
IGP-DenseNet block, there are 2 columns and 2 convolutional layers.

gradient calculation for sign(·) function.

Forward: Wb = E × sign(W )

Backward:
∂L
∂W

=
∂L

∂Wb
× ∂Wb

∂W
≈ E × ∂L

∂Wb

(1)

Binarization of activations. The forward propagation and backward propagation to bina-
rize the activations are calculated as follows. A and Ab represent the full precision activations
and binary activations, respectively.

Forward: Ab = sign(A)

Backward:
∂L
∂A

=
∂L
∂Ab

× ∂Ab

∂A

where
∂Ab

∂A
=

 2+2A,−1 < A < 0
2−2A,0 ≤ A < 1
0,otherwise

(2)

4 Clarifications for our proposed architectures
Taking M = 3 as an example, Figure 5 (a) and (b) are candidate architectures of IGP-
ResNet21(50) block with a depth of 2. Heterogeneous branches of summation aggregation
are helpful to break symmetry and learn different features, and we suggest Figure 5 (b) for
IGP-ResNet. To explain our suggestion, we revisit the constant initialization scheme of neu-
ral networks. The neurons with constant initialization adopt a weighted sum in the forward
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path, and they have identical gradients in the backward path. Throughout the training, neu-
rons evolve symmetrically, which prevents the neurons from learning different features. In
Figure 5 (a), V =C1(I,W1)⊕C3(I,W3), where W1 and W3 are parameters (or weights) of C1
and C3, respectively. Here we consider architectural hyperparameters and assume W1 =W3.
Then, two branches of summation aggregation, i.e., C1 and C3, have the same architectures
in the forward path, and they have identical gradients in the backward path. In other words,
C1 and C3 use constant initialization for architectural hyperparameters. In Figure 5 (b), each
branch of summation aggregation has a unique architecture, which is helpful for branches to
break symmetry and learn different features.

Convolution

Summation

Figure 5: Candidate architectures of IGP-ResNet block.

More importantly, we would like to clarify that our IGP-ResNet and IGP-DenseNet do
not cover all the architectures, which can be designed by improving gradient paths. We
expect that other advanced architectures will be designed by improving gradient paths for
BCNNs in future work.

5 Experimental details
We show all the experimental details in this section, including the data augmentation for
CIFAR-100 and ImageNet, the training settings for ResNet on CIFAR-100 and ImageNet,
and DenseNet variants on CIFAR-100 and ImageNet.

It is worth clarifying that we design IGP-ResNet and IGP-DenseNet since binary ResNet
and DenseNet variants have different strengths. The inference of binary ResNet variants
is more efficient (i.e., less computational complexity) than that of binary DenseNet vari-
ants. However, the training of binary DenseNet variants is more efficient than that of binary
ResNet variants since binary DenseNet variants are trained from scratch while binary ResNet
variants need their full-precision pre-trained counterparts as initialization.

Data augmentation for CIFAR-100 classification. CIFAR-100 classification dataset [5]
contains 50K training images and 10K test images and consists of 32× 32 color images
drawn from 100 classes. Images are first zero-padded on each side with four pixels. A
random 32×32 patch is cropped from its padded image or its horizontal flip before applying
mean/std normalization. During testing, we use only mean/std normalization.
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Training setting for ResNet variants on CIFAR-100 classification. For ResNet variants,
we use the batch size of 128 and train 200 epochs in total. The learning rate is started at
0.1 and decays by a factor of 0.2 at the step of 60, 120, and 160. Since binarization can be
regarded as a regularization, the weight decay is set at 0.0 for BCNNs.

Training setting for DensneNet variants on CIFAR-100 classification. For DenseNet
variants, we use the batch size of 128 and train from scratch for 200 epochs with an adam
optimizer and a weight decay of 0.0. The learning rate starts at 0.002 and decreases using a
cosine annealing schedule until 0.0. We use the method in [4] to initialize the weights. The
Relu layer is removed from the "Bn-Relu-Conv" layers.

Data augmentation for ImageNet classification. ImageNet classification dataset [3] con-
sists of 1.2 million images in the training dataset and 50K images in the validation dataset. A
224×224 crop is randomly sampled from an image or its horizontal flip, with the per-pixel
mean subtracted. When validating, we perform data augmentation by resizing a shorter edge
to 256 and center-cropping to 224×224 pixels, and similarly, normalizing the input images
with mean channel subtraction.

Training setting for ResNet variants on ImageNet classification. For ResNet variants,
we train a full precision model as an initialization for the BCNNs. During finetuning, the
weights and activations are binarized, while the downsampling convolution layer or transi-
tion block remains in full-precision in BCNNs. When training the full-precision model, we
reorder the layers from the order of "Conv-Bn-Relu" to the order of "Conv-Relu-Bn". Re-
garding the training settings, we train a full-precision model using a momentum optimizer
and a weight decay of 1e− 4. We train 100 epochs in total. The learning rate starts at 0.1
and decays with a factor of 0.1 at the step of 30, 60, and 90. The Tanh function is inserted
for the input activations of the convolution. During finetuning, we adopt an adam optimizer
and a weight decay of 0.0. We train 50 epochs in total. The learning rate starts at 5e−4 and
decays at the step of 30 and 40. The Tanh function is replaced with the binarization function.
We use a batch size of 256.

Training setting for DenseNet variants on ImageNet classification. For DenseNet vari-
ants, we train from scratch for 100 epochs with an adam optimizer and a weight decay of
0.0. The learning rate starts at 0.002 and decreases using a cosine annealing schedule until
0.0. We use the method in [4] to initialize the weights. The Relu layer is removed from the
"Bn-Relu-Conv" layers.

6 Computational complexity analysis

To guarantee a fair comparison, we scale the number of base channels or the growth rate of
our proposed architectures to match the computational complexity of Bi-Real ResNet and
BinaryDenseNet baselines. The computational complexity is analyzed in terms of storage
in Mbit, computation in Flops, and run-time memory in MB. Given a computation com-
plexity budget, we scale the number of base channels or the growth rate for our proposed
architectures with various network architecture configurations to show that our proposed
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architectures are robust to architectural hyperparameters of neural networks. Taking IGP-
ResNet41(48) and IGP-DenseNet51(53) as examples, 41 and 51 are the depths of our pro-
posed architectures, while 48 and 53 refer to the number of base channels and the growth
rate after scaling, respectively.

Storage and computation We adopt the number of parameters as the metric for storage
usage, and the number of Flops as the metric for computational efficiency. The number
of parameters is measured as the summation of 32bits times the number of floating-point
parameters and 1bit times the number of binary parameters in the model. The XNOR and
Popcount bitwise operations can be executed by the current CPUs with a parallelism of 64.
Therefore, the Flops is calculated by the number of floating-point multiplications plus 1/64
of the number of binary multiplication.

Run-time memory consumption To estimate the run-time memory requirement, we cal-
culate the size of weights and activations for a layer or an operation, plus all the activations
of shortcuts that cross past that layer or operation. The type of that operation can be either
a summation or a concatenation. We report the largest among such values for each model,
which would serve as a lower bound for the run-time memory disregarding the layer or op-
eration schedule even though the actual usage would largely depend on individual hardware
and framework implementation. The reported run-time memory is estimated with a batch
size of 64.

Computational complexity of shortcuts and summations There are more shortcuts and
summations in our proposed architectures than in Bi-Real ResNet and BinaryDenseNet.
Thus, the shortcuts and summations in our proposed architectures need more run-time mem-
ory and more computation than those in Bi-Real ResNet and BinaryDenseNet. However, the
binary convolutional layers in our proposed architectures consume less run-time memory
and less computation than those in Bi-Real ResNet and BinaryDenseNet. To ensure a fair
comparison, we scale the number of base channels or the growth rate of our proposed ar-
chitectures to match the computational complexity of Bi-Real ResNet and BinaryDenseNet.
For example, we build IGP-ResNet21 with a scaled number of base channels equal to 53 to
match the computational complexity of Bi-Real ResNet18 with the number of base channels
equal to 64. Thus, our proposed architectures require almost the same run-time memory and
computation as Bi-Real ResNet and BinaryDenseNet.

7 Experimental results on CIFAR-100
ResNet variants on CIFAR-100 As shown in Table 2, we present the error of our pro-
posed architectures for binarizing ResNet18 and ResNet34. IGP-ResNet variants with vari-
ous network architecture configurations consistently outperform Bi-Real ResNet baselines.
Compared with Bi-Real ResNet18(64) and Bi-Real ResNet34(64), the Top-1 error of our
IGP-ResNet21(50) and IGP-ResNet41(45) are improved by 2.14% and 2.57%, respectively.
Considering the computational complexity, our IGP-ResNet21(50) use 0.11Mbit less for
storage, 0.14×107 Flops less for computation, and 2.10MB more for run-time memory than
Bi-Real ResNet18(64). Our IGP-ResNet41(45) saves the storage by 0.64Mbit, the compu-
tation by 0.33× 107 Flops, and the run-time memory by 3.14MB compared with Bi-Real
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Model Top-1 Top-5 Storage Computation Run-time memory

Bi-Real ResNet18(64) 28.48% 8.65% 18.18Mbit 1.67×107Flops 50.33MB
IGP-ResNet21(50) 26.34% 7.89% 18.07Mbit 1.53×107Flops 52.43MB
IGP-ResNet37(36) 26.67% 7.51% 17.57Mbit 1.42×107Flops 47.19MB
IGP-ResNet69(26) 26.85% 7.57% 17.63Mbit 1.38×107Flops 40.89MB
Bi-Real ResNet34(64) 27.93% 8.37% 28.28Mbit 2.61×107Flops 50.33MB
IGP-ResNet41(45) 25.36% 7.26% 27.64Mbit 2.28×107Flops 47.19MB
IGP-ResNet77(32) 25.57% 6.86% 27.94Mbit 2.24×107Flops 41.94MB
IGP-ResNet149(22) 26.38% 7.83% 26.35Mbit 2.08×107Flops 34.60MB
BinaryDenseNet51(32) 27.16% 7.77% 17.65Mbit 5.13×107Flops 117.44MB
IGP-DenseNet51(48) 26.72% 7.51% 17.51Mbit 5.32×107Flops 92.27MB
BinaryDenseNet69(32) 26.88% 7.52% 23.70Mbit 5.50×107Flops 117.44MB
IGP-DenseNet69(44) 26.38% 7.32% 23.33Mbit 5.67×107Flops 85.98MB

Table 2: Binary ResNet and DenseNet variants on CIFAR-100. There are four blocks in this
Table. First block: ResNet18(64) and IGP-ResNet variants to compare with ResNet18(64).
Second block: ResNet34(64) and IGP-ResNet variants to compare with ResNet34(64).
Third block: BinaryDenseNet51(32) and IGP-DenseNet variants to compare with Bina-
ryDenseNet51(32). Fourth block: BinaryDenseNet69(32) and IGP-DenseNet variants to
compare with BinaryDenseNet69(32).

ResNet34(64), respectively.

DenseNet variants on CIFAR-100 As shown in Table 2, we present the error of our pro-
posed architectures for binary DenseNet51(32) and DenseNet69(32). The Top-1 error of our
proposed IGP-DenseNet51(48) and IGP-DenseNet69(44) are 0.44% and 0.50% lower than
those of BinaryDenseNet51(32) and BinaryDenseNet69(32), respectively. The increased
number of Flops required for our proposed IGP-DenseNet51(48) and IGP-DenseNet69(44)
is 0.19× 107 and 0.17× 107, respectively, while the decreased number of parameters re-
quired for them is 0.06Mbit and 0.37Mbit, respectively, and the decreased run-time mem-
ory size needed for them is 25.17MB and 31.46MB, respectively, compared with Binary-
DenseNet51(32) and BinaryDenseNet69(32).

8 Ablation study
We have shown that our proposed architectures have better gradient paths and achieve lower
error than Bi-Real ResNet and BinaryDenseNet. In this section, we verify the essential role
of the gradient path that requires the smallest number of operations to compute gradient
backpropagation. The architectures of GP-ResNet are obtained by removing all the residual
connections from IGP-ResNet. Thus, N1st is 0 for IGP-ResNet and NIR for GP-ResNet block.
As shown in Table 3, the Top-1 error of GP-ResNet21(50) and GP-ResNet41(45) is 5.48%
and 14.78% higher compared to their IGP-ResNet counterparts.
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