

Dual Pyramid Generative Adversarial Networks for Semantic Image Synthesis

Shijie Li¹, Ming-Ming Cheng², Juergen Gall¹

□ **Motivation**

Contribution

Most semantic image synthesis methods struggle to generate realistic objects as they cannot handle scale information properly. We address this issue by enhancing the multi-scale ability for both generator and discriminator. The approach thus generates more realistic

□ Architecture

Dual Pyramid Generator

- We propose a **dual pyramid generator** for semantic image synthesis which adapts the conditioning to the size of the objects.
- We propose to unify supervision at **pixel**, **patch**, and **feature** level to enforce the generator to generate realistic objects that are well aligned with the semantic maps.
- State-of-the-art qualitative and quantitative results on 3 datasets

Scale-Enhancement Discriminator \bullet

Dual Pyramid Generator

Spatially-adaptive normalization (SPADE) lacksquare

$$\gamma_{x,y,c}^{i}(\mathbf{l}^{i}) \frac{h_{x,y,c,n}^{i} - \mu_{c}^{i}}{\sigma_{c}^{i}} + \beta_{x,y,c}^{i}(\mathbf{l}^{i})$$

Supervision \bullet

 $\begin{bmatrix} N & H \times W \end{bmatrix}$

□ Scale-Enhancement Discriminator

We utilize supervisions at different levels to boost the ability of

discriminator to handle multi-scale information

• Pixel-level

$$\mathcal{L}_{pixel} = -\mathbf{E}_{(\mathbf{x},\mathbf{l})} \left[\sum_{c=1}^{N} \alpha_c \sum_{x,y}^{H \times W} \mathbf{l}_{x,y,c} \log D(\mathbf{x})_{x,y,c} \right] - \mathbf{E}_{(\mathbf{z},\mathbf{l})} \left[\sum_{x,y}^{H \times W} \log D(G(\mathbf{z},\mathbf{l}))_{x,y,c=N+1} \right] \quad \alpha_c = E_{\mathbf{l}} \left[\frac{H \times W}{\sum_{x,y}^{H \times W} \mathbf{l}_{x,y,c}} \right]$$

$$\mathcal{L}_{G} = -\mathbf{E}_{(\mathbf{z},\mathbf{l})} \left[\sum_{c=1}^{\infty} \alpha_{c} \sum_{x,y}^{\infty} \mathbf{l}_{x,y,c} \log D(G(\mathbf{z},\mathbf{l}))_{x,y,c} \right]$$
$$-\frac{1}{L} \sum_{i=1}^{L} \mathbf{E}_{(\mathbf{z},\mathbf{l})} \left[\min(-1 + D_{p}^{i}(\boldsymbol{\psi}^{i}(G(\mathbf{z},\mathbf{l}))), 0) \right] + \mathcal{L}_{fm}$$

• Patch-level

 $\mathcal{L}_{ms}^{i} = -\mathbf{E}_{\mathbf{x}} \left[\min(-1 + D_{p}^{i}(\boldsymbol{\psi}^{i}(\mathbf{x})), 0) \right] - \mathbf{E}_{(\mathbf{z},\mathbf{l})} \left[\min(-1 - D_{p}^{i}(\boldsymbol{\psi}^{i}(G(\mathbf{z},\mathbf{l}))), 0) \right]$

• Feature-level

$$\mathcal{L}_{fm}^{i} = \mathbf{E}_{(\mathbf{x},\mathbf{l},\mathbf{z})} \left[\frac{\sum_{x,y}^{H^{i} \times W^{i}} \left\| \phi^{i}(\mathbf{x})_{x,y} - \phi^{i}(G(\mathbf{z},\mathbf{l}))_{x,y} \right\|_{2}^{2}}{C^{i} \times H^{i} \times W^{i}} \right]$$

DExperiments

Qualitative Evaluation

Methods	Citys	scapes	AD	E20K	ADE20K-Outdoor				
Methods	FID ↓	mIoU ↑	FID ↓	mIoU ↑	FID 🗸	mIoU ↑			
CRN [3]	104.7	52.4	73.3	22.4	99.0	16.5			
pix2pixHD [<mark>30</mark>]	95.0	58.3	81.8	20.3	97.8	17.4			
SPADE [21]	71.8	62.3	33.9	38.5	63.3	30.8			
DAGAN [27]	60.3	66.1	31.9	40.5	N/A	N/A			
LGGAN [28]	57.7	68.4	31.6	41.6	N/A	N/A			
CC-FPSE [17]	54.3	65.5	31.7	43.7	N/A	N/A			
SIMS [22]	49.7	47.2	N/A	N/A	67.7	13.1			
OASIS [25]	47.7	69.3	28.3	48.8	48.6	40.4			
DP-GAN	44.1	73.6	26.1	52.7	45.8	40.4			

Comparison to state-of-the-art methods on different datasets.

mloU Son

Quantitative Evaluation

Generated images from ADE20k dataset

	road	SWa	buil	wall	fenc	pole	tligh	sign	veg	terra	sky	bers	ride	car	truc	bus	trair	idm	bike	obj-
SPADE [21]	97.5	80.8	88.5	54.3	50.6	40.4	39.0	41.9	88.7	69.1	92.0	66.2	41.5	89.1	64.6	73.2	42.1	29.7	61.5	53.6
DAGAN [27]	97.4	80.0	89.0	60.1	53.7	41.2	39.4	46.5	88.9	65.9	92.5	66.8	45.8	89.9	71.2	75.4	57.0	25.8	60.9	56.4
CC-FPSE [17]	97.7	82.8	89.8	56.1	61.3	42.3	41.8	50.4	89.6	69.3	92.5	68.5	48.3	90.2	69.7	74.3	45.4	43.4	65.0	58.1
LGGAN [28]	97.8	83.1	89.7	59.8	56.0	42.5	42.8	50.5	89.5	70.0	92.7	69.0	48.6	90.6	72.2	80.2	52.4	38.8	64.0	59.2
OASIS [25]	96.9	79.2	85.1	70.3	64.2	41.6	50.7	49.9	85.0	74.8	92.0	64.9	54.0	88.4	65.6	79.9	63.4	53.9	63.7	61.5
DP-GAN	97.5	81.9	87.2	71.4	72.7	46.9	55.5	60.3	87.3	72.9	92.4	67.4	55.5	89.9	81.5	83.1	73.9	55.3	66.9	66.9

Per-class IoU for Cityscapes, obj-mIoU is mIoU only for object classes.

Cropped objects from generated images (Cityscape)

Architecture Ablation

(a) Gen / Dis						(b) \mathcal{L}_n	_{1s} in (5)		(c) \mathcal{L}_{fm} in (6)						
Gen	Dis	FID	mIoU	obj-mIoU	Enc	Dec	FID	mIoU	obj-mIoU	Enc	Dec	FID	mIoU	obj-mIoU		
OA	OA	47.7	69.3	61.5			49.2	67.9	59.5			44.1	69.9	62.1		
OA	DP	47.9	74.0	67.4		\checkmark	44.5	72.1	64.4	\checkmark		44.4	69.2	60.8		
DP	OA	45.4	69.9	62.0	\checkmark	\checkmark	44.3	72.8	66.4	\checkmark	\checkmark	45.0	73.8	66.8		
DP	DP	44.1	73.6	66.9	\checkmark		44.1	73.6	66.9		\checkmark	44.1	73.6	66.9		

DP or OA denote if the generator or discriminator from OASIS (OA) or our approach (DP) are used