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Abstract

Multi-view video synthesis generates the scene dynamics from a viewpoint given a
source view and one or more modalities of a targeted view. In this paper, we frame
video synthesis as a feature learning problem and solve it as target-view motion synthesis
with spatial refinement. Specifically, we propose a motion synthesis network with a
novel recurrent neural layer that learns the spatio-temporal representation of the target-
view. Next, a refinement network corrects the generated coarse texture by learning the
residual (i.e. high-frequency textures) through a UNet generator. Experimental results
show visual quality enhancement of the proposed pipeline over state-of-the-art methods.

1 Introduction

Multi-view synthesis generates an object or a scene from partial information of a target
viewpoint [14, 16, 24]. The main challenges of this problem are maintaining temporal con-
sistency of the synthesised motion as well as managing occluded regions of the source view.
Unlike novel-view synthesis [19, 20, 34] that generates a target RGB view from a dense
multi-camera setup, multi-view video synthesis [14] relies on a sparse camera setup and as-
sumes the availability of one or more modalities of the target view e.g. (depth, skeleton, 3D
mesh, semantic segmentation).

In this paper, we propose a learning-based approach for sparse camera setting. Inspired
by the success of two-stage pipelines for pose-guided human image synthesis [13, 18], we
propose View Adaptive Network (VA-Net) a neural network generator that exploits the abil-
ity of recurrent neural networks to approximate spatio-temporal target-view features. Specif-
ically, we estimate a foreground mask and optical flow with separate networks to help guiding
the network during the synthesis, and we estimate the foreground feature representation of
the target view using only a depth prior. We use the source-view video for implicit tex-
ture mapping and, to improve the preservation of texture across views, we propose View-
Adaptive LSTM (VA-LSTM), a recurrent neural network structure that improves the target-
view feature representation of the target-view video by aggregating a texture-less represen-
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Input-view
video
Background

Figure 1: Multi-view video synthesis. The target view is estimated through an operator ‘P';_,; that
estimates the target-view feature £/ combining the input-view video as implicit texturing and a Texture-
less representation, obtained through foreground estimation and background scene structure.
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tation and texture mapping (Fig. 1). The resulting framework is a two-stage pipeline that
first synthesizes the target-view using the feature approximation approach and then refines
the synthesized video to remove artifacts produced during the first stage.

2 Related Work

The novel-view synthesis problem can be tackled using graphics-based methods, which aim
at producing high-fidelity novel-view images of objects of interest. These objects can be
rigid (e.g. cars [4]) or non-rigid (e.g. synthetic [37] or real [22] human bodies or animals,
such as zebras [39], chimpanzees [23]). While graphics-based methods produce high-quality
images, they are time expensive i.e. order of seconds which hinders such methods to be
applied to real-time synthesis scenarios. Learning-based methods [18, 34] offer a trade-off
between quality and running time. These methods rely on modalities such as skeleton [18],
scene parsing [3, 7], depth [14], 3D meshes [16], or the first-frame of the novel view [24].

We categorise the synthesis methods as: graphics and learning based. The goal of graph-
ics methods is to achieve photorealistic rendering of a scene at a reasonable frame-rate [2].
This is achieved by modeling the physical properties of a scene (geometry, surface prop-
erties) [30]. Mesh-based methods focus on deforming a 3D body mesh to fit onto the 2D
image of a person captured from a certain viewpoint. Such methods can be classified into
template-based, model-based, and free-form [36]. Despite the impressive visual quality that
the graphics methods achieve, they fall short on the capturing system of the novel-view data.
For example, for template-based methods, the human body is scanned using an acquisition
setup that consists of multiple cameras placed on a dome shape. Besides the good mesh
estimation of the human body, they also require a template mesh for each human body and
clothing dress which makes them impractical in some scenarios.

The learning based approach exploits the ability of neural network encoder-decoders to
synthesize the target-view. The main assumption of this class of method is the multi-view
camera configuration, where the goal is to synthesize the target-view from sparse camera
configuration. We group the method as pose-guided and modality-based. Pose-guided meth-
ods [15, 18, 28, 29, 38] use mainly a 2D human skeleton or a heatmap derived from the skele-
ton. The skeleton provides a sparse discrete 2D location that guides the generator network to
transform the image in its initial pose to the desired pose. Modality-based method [14] ex-
tends the pose-guided image synthesis [18] to the video domain. View-LSTM [14] proposed
to decompose the target-view feature space as a view-invariant representation, shared among
all the views, and a view-specific representation. GTNet [16] estimates the foreground of the
target-view video using 3D mesh correspondence, then, a generator refines the foreground
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Figure 2: Foreground feature learning. We use a teacher-student approach [6] to estimate the feature
of the foreground motion. The teacher model @ is pre-trained on synthesizing the target-view video
using ground-truth s/. The student model ®¢~** tries to focus on the motion contained in the depth d/.

estimation and synthesizes the background. Dual Representation [27] learns a global repre-
sentation of the scene using images from different views. The global representation is then
combined with a view-dependent representation as query to synthesis the targeted view. RT-
Net [24] extends the image animation problem to the multi-view setting. Given only the first
frame of the target-view video, a motion transfer module animates the image based on the
input-view video.

3 View Adaptive LSTM

We address the multi-view synthesis as a feature learning problem. Therefore, we present
a formulation to estimate the target-view feature &/ as a composition of a texture-less rep-
resentation and an implicit texturing. To make use of the temporal feature learning abilities
of RNN, we propose a recurrent network formulation, View Adaptive LSTM (VA-LSTM) that
aggregates a texture-less representation and the input-view video used as an implicit texture
mapping. We estimate the foreground motion feature from the depth sequence as the only
target-view modality input. Next, we estimate the texture-less representation using the fore-
ground motion and the feature representation of the background. Finally, we aggregate the
texture-less representation along with the input-view video as texture mapping.

Foreground feature learning. To estimate the spatio-temporal feature £/, it is enough
to estimate the feature of the foreground modality s/, represented as P keypoints, obtained
through a mapping ®° : R®7*P — R” where m € N, Qr = W x H x T is a grid of width W,
height H and time span T, respectively. However, the estimation of ®° is intractable as the
model would need to learn the representation for all possible poses and camera locations. To
overcome this problem, we adopt a data-driven approach to learn another mapping, ®3, to
approximate ®*. Specifically, we use the depth d/ to learn to focus on the motion using the
mapping &7 : R — R™ to estimate @ with a teacher-student approach [6]. In partic-
ular, we use the encoder of a synthesis generator trained using the ground-truth foreground
modality. Through the network training, the feature from the encoder ®¢~* is forced to
estimate the feature from ®; (Fig. 2).

To estimate the foreground feature of s/, we use an encoder from a pre-trained generator
to force the representation & ~*(d/) to approximate the motion feature as:

§ = d?5(d)) = Bi(s). (1)
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-
Figure 3: VA-Net: We propose a two-stage pipeline to synthesize the target-view video. The motion
network is a two-stream generator. We estimate the foreground motion §/ using the depth d/. The
operator '¥;_, j, implemented as VA-LSTY, estimates the target-view feature 2J. The refinement network
enhances the synthesis from the motion network using a 3D-CNN UNet architecture.

~

}

Output gate. Eq. 4

qu’—)j

Figure 4: View Adaptive LSTM (VA-LSTM). We extend the Conv-LSTM [26] to implement '¥;_, ;. We
obtain the rexture-less representation using AdaIN with d’ as a style and the estimated motion feature
§/ as content. x/ is used as implicit texture.

This enforces the student model &7 to retain the foreground motion contained in the depth
d/. We apply a feature loss, Ly, to force @473 to learn discriminative feature as @5. The loss
encourages the prediction from ®?~* to look like the feature produced using ®s.

Texture-less representation. In the context of images, a style is defined as the texture
describing the overall look e.g., mountain, beach, or the artistic look e.g. a Van Gogh painting
from a Picasso [11]. In our problem setting, the motion feature §/ provides the content and
the scene structure, represented by the depth feature d/ as the style. The intuition is to add to
the motion feature representation “content” as a style, defining the scene where the motion is
taking place. The style d/ does not provide a texture and therefore, the aggregation of these
representations using an operator ¥;_, ; produces a fexture-less representation.

Inspired by [8, 21], we adopt the adaptive instance normalization (AdaIN) module as
aggregator to learn the representation 7. The use of AdaIN encourages the texture-less rep-
resentation to match the mean y and the standard deviation ¢ of the distribution of the
ground-truth target-view samples [19, 20]. The representation is obtained as:

AdaIN(¥/, d/) = o(d’) <SJG(‘;()S])) + p(d’). )

Target-view feature approximation. The feature x' is the representation of the input-
view video using an encoder & : R®7*3 — R”. The operator ¥, , it R?" — R™ approxi-


Citation
Citation
{Shi, Chen, Wang, Yeung, Wong, and Woo} 2015

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

Citation
Citation
{Huang and Belongie} 2017

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Nguyen{-}Phuoc, Li, Theis, Richardt, and Yang} 2019

Citation
Citation
{Nguyen-Phuoc, Richardt, Mai, Yang, and Mitra} 2020


LAKHAL, LANZ, CAVALLARO: IMPLICIT TEXTURE MAPPING 5

mates the spatio-temporal feature representation of the target-view video as: &/ ~¥;_, i (t/]x%).
We present View Adaptive LSTM (VA-LSTM) that implements ¥; . ; using Conv-LSTM [26].
The memory cell of each input are extracted independently in order to retain separate mem-
ory for each of the inputs (x/,8/, and d/) which can be seen as the accumulated spatio-
temporal feature (up to time-step ) of the input on the feature space induced by Conv-LSTM.
The hidden state of the combined inputs is used to approximate &/ (Fig. 4).

The memory cell of the texture map is obtained as' ¢ = LSTM(x’,h,_1). The memory
cell of the depth is ¢/ = LSTM(d/,h, ;). Likewise, the memory cell of the foreground is
computed as ¢/ = LSTM(§/,h,_;). We combine ¢} and ¢/ to obtain the texture-less represen-
tation ¢ defined in Eq. 2 as ¢f = AdaIN(c!,c?). However, these LSTM modules are related
through a single hidden state h (Eq. 4) which estimates the target-view feature &/.

Note that using ¢* in computing ¢ and ¢/ helps both memory cells in learning discrimi-
native feature towards the motion in ¢ and the target-view scene structure ¢/. The aggregator
W;_. j receives x!, 8/, and d/ from separate LSTM units. The output gate controls the impor-
tance of each LSTM gate state to be used by the hidden state.

0 = sigmoid(Wx,, *xﬁ +W,, *§{ +W,, * d',i + Weoxel +Wqpxef ) , 3)

Input information Texture map + texture-less cell

where  is the convolution operation, and W with subscript are the learnable weights.
We maintain separate the foreground §/ and the background d’ as input information to put
equal emphasis on each part.

For small camera extrinsic changes from the input-view camera, the input view feature
x! provides rich information on the target-view scene structure. The interpretation of this can
be implemented through a skip connection [5]. The hidden state h, approximates &/ as:

&/ ~h, = 0, ® tanh (Wch ¢+ Wo *cf) FAx, &)

where A is the importance weight of the residual connection.

3.1 View Adaptive Network (VA-Net)

We present View Adaptive Network (VA-Net), a two-stage pipeline for multi-view video
synthesis. The first stage, Motion network, synthesizes low-frequency details using our VA-
LSTM to estimate the spatio-temporal target-view feature &/. The second stage, Refinement
Network, refines the synthesis and corrects artifacts (Fig. 3).

Motion network. We follow a two-stream [32] architecture to synthesizes the fore-
ground and the background separately. Let the network outputs )2}, )?{, represent the fore-
ground and the background, respectively (Fig. 3).

We obtain the target-view video using the predicted 72/, O/, and a warping function W.

&, =W(&, 0 oml +# 6 (1-m), (5)

we apply the predicted binary mask 77/ to the foreground and 1 — @/ to the background
stream. Additionally, we guide the foreground stream to learn a residual from the synthesis
of the previous frame.

'We use the same notation for the Conv-LSTM to represent the variables
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Figure 5: The Motion Network synthesizes low frequency details and the Refinement Network removes
artifacts as shown in zoomed boxes (left: Motion; right: Refinement).

To train the network, we use the total loss: L = L, + .1L;+ .01(L, 4+ L,), with a recon-
struction loss, L,, a feature loss, L, a perceptual loss, L;, and an adversarial loss, L,. The
reconstruction loss uses an L reconstruction term between the network output £, and x/:

Ly =} =5, ©)
The feature loss enforces the feature ®?~*(d/) to approximate @S (s/) using an L, term:
L = ||@i() - o (@) | . 7

The perceptual loss projects both x/ and & using the 13D [1] perceptual network ¢ and
computes the L, error:

L=|jo(')—o(#)],- ®)

Finally, the adversarial loss uses a discriminator D to distinguish true from synthesized
videos on a min-max optimization:

L, = E[log(D(x',x'))] + E[log(1 = D(x',},))]. ©)

Refinement network. The synthesized video £/, from the motion network may con-
tain some visible artifacts that decrease the overall perceptual quality of the video, a 3D
UNet generator is therefore used to remove such artifacts. The final target-view video is
#/ = UNet(%j,|x') where we condition the synthesis with the input-view x' in order to correct
the texture from £J,. To train the network, we combine a reconstruction loss, Lgsiv, and an
edge loss, L,. The reconstruction loss uses SSIM [33] to penalize high-frequency prediction:

Lssiv = 1 — SSIM(x/, #7). (10)

The edge loss is based on an edge detection algorithm (we chose Sobel ﬁlter_[lZ]) and
penalizes the prediction by applying the pre-defined filters C, and C, over x/ and £/ to obtain
the vertical and horizontal derivative, respectively:

Le:||CX*XJ—CX*XAJ||+||Cy*xj_cy*xAj|| (11)

The training loss is L. = Lssim + . 1L, and the value .1 is defined empirically.
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Table 1: VA-Net ablation. FG: ablation of the foreground estimation. Teacher-student approach
(student) vs. Dedicated encoder of the semantic segmentation s/ trained jointly with the generator
(random). We also highlight the feature loss L, vs. Lq; Skip: importance of the residual skip connec-
tion in the proposed VA-LSTM; H-freq: refinement network with different losses. KEY — M: mask.

Ablation  Strategy SSIM M-SSIM PSNR M-PSNR
random 844 976 24.26 30.82
FG student W/ Ls .847 977 24.43 30.99
student w/ Ly .862 978 24.71 31.15
- gki; T 7 “whoskip T T 796 T 966 — 2255 T 28.12°
w skip 862 978 24.71 31.15
T T T Lssm+L, 895 ~ T 979 T T 2548 T 3136
H-freq Lssim 892 979 2533 31.31
L, 888 979 25.56 31.45

4 Validation

We validate the proposed model and compare it with state-of-the-art models. The proposed
model is implemented as ResNet [9], which is widely adopted by [14, 16, 29, 38]. We use
the cross-subject split of the NTU RGB+D dataset [25] and we follow the evaluation defined
in [14]. We evaluate the quality of the synthesized video with Structural Similarity (SSIM),
Peak Signal-to-Noise-Ratio (PSNR) [33] and their masked versions [18]; Percentage of Cor-
rect Keypoints (PCK) [35]; and Fréchet Video Distance (FVD) [31].

Foreground feature learning. We compare the encoder that estimates the foreground mo-
tion feature, 9%, with the pre-trained teacher network, @3, against random, a model that
trains the encoder ®° from scratch. Next, we look at the feature loss and we replace the L,
term with a loss based on the feature statistics L, similar to [17]:

Lo =X[|o(s) ~ o(®)|, + |u(s/) — (3]l

Tab. 1 compares the teacher-student approach to learn the encoder ®° against random

and Ls. The improvement with the proposed teacher-student learning approach is due to the
explicit loss term over the feature, instead of implicitly learning with a pixel-reconstruction
loss. The L, feature loss improves over Ly as ®?7* learns the feature representation of s/
and penalizing over the mean and variance with L is sub-optimal.
Motion network. Tab. 2 compares the synthesis performance and model size of variants
of VA-LSTM: Branch (x applied to d/ and §/ with separate AdaIN module), Conv (AdaIN
replaced by convolution), and Sum (AdaIN replaced by summation). Because of the teacher-
student approach, unlike View-LSTM we do not require an additional trainable encoder.
The AdaIN module does not require additional trainable parameters. The encoder uses non-
linear operations and therefore produces features that are related in a non-linear way. Tab. 3
compares the proposed VA-LSTM and View-LSTM with the same input modalities. VA-
LSTM outperforms View-LSTM and requires fewer trainable weights. Also, dense fore-
ground modality using the human parsing provides a richer spatial locality that improves
visual quality.

To avoid extensive hyper-parameter search, we set empirically the residual factor A to
1072, Tab. 1 shows that adding the residual skip connection improves the quality of the
synthesized video. Thanks to the spatio-temporal feature learning using our VA-LSTM, the
synthesized videos are temporally consistent which is validated by good FVD scores (Tab. 4).
Refinement network. Tab. | shows the benefit of the proposed loss for the refinement
network. The Sobel loss L, enhances the overall perceptual quality over the L; and using
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X X/ G, *xx/ G, *x %/ Error

Figure 6: Edge loss. The refinement network was trained on penalizing the edges using Sobel filters
over which results in better high-frequency details.

Table 2: VA-LSTM ablation. We replace the AdaIN operation to compute the fexture-less represen-
tation with conv, sum, and a variant branch where AdaIN is applied to d/ and §/ separately. We
highlight the benefit of VA-LSTM in terms of trainable weight against View-LSTM.

Method SSIM M-SSIM PSNR M-PSNR #param
View-LSTM | .821 972 2318 2970 (1436 +2241)M
S +AdaIN | 862 978 2471 3115 1370 M
& +branch| .851 979 2414  31.63 1547M
= +conv 847 979 2442 31.65 13.83M
S 4sum 842 979 2437  31.63 13.70 M

Table 3: VA-LSTM vs. View-LSTM using the same modalities. KEY — M: mask; s/ skeleton; SV:
human parsing.

Model Modalities SSIM  M-SSIM  PSNR  M-PSNR
vewtstn 8 R R Wk
wisw 4L W e an u
PATN [38] XinGAN [29] PG? [18] Ours
P— |
|

o |

Figure 7: Pose-guided comparison. Due to the lack of explicit temporal consistency term in pose-
guided methods, they fail to capture the motion in the target-view resulting in misclassifying the back-
ground synthesis as well.

only the SSIM loss. It is worth noticing that the foreground quality is almost the same with
all the losses. This is because the refinement mainly focused on correcting visible artifacts
that are mostly present in the background. Fig. 6 shows an example of the edge loss, the
heatmap of the error between the ground-truth and the synthesized video using the filter C,.
We note good high-frequency details from the synthesized videos, we also observe similar
behavior with the filter C,.

SOTA comparison. Tab. 4 compares the proposed VA-Net against state-of-the-art methods.
Video-based methods outperform image-based methods [18, 29, 38] as 2D-CNNs do not
provide temporal context and generate inconsistent background synthesis. The networks
that use both input and output skeleton [29, 38] fail to properly synthesize pose in the target-
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Baseline VDNet [14] GTNet [16]

e

RTNet [24] VA-Net (motion) VA-Net (refinement)

el

Figure 8: Pose-estimation. Our method has a 69.9% recall which results in many images where the
pose estimator can estimate the keypoints. White image means that the pose estimator fails to estimate
the keypoints.

Table 4: VA-Net against pose-guided and modality-based target-view synthesis methods. RTNet [24]
(highlighted in gray) uses ground-truth first frame of x/. KEY - M: mask; Image: image based; Gen:
generator with a single decoder; Motion: motion transfer; Two-stream: generator with two decoders;

Colors: N . * Model as reported in [24].
i PCK .

Method Cat.|'¥;,; Modality SSIM M-SSIM PSNR M-PSNR FVD| L (.0 (‘oo (o Precision Recall FI
PG? [18] g |CNN g 582 954 1690 2587 1184|1091 97.8 747 144 881 128 224
PATN [38] g |ONN s 534 948 1624 2455 1311|1168 980 697 102 884 1178
XingGAN [29] = |ONN 5 445 933 1332 2329  1447[2641 896 178 01 845 1
VDNet 5 [RNN &/,5 821 972 2318 2970 578 | 437 993 924 512 910 _ 553 687
Baseline S |CNN @ 813 965 2282 2787 528 | 580 994 894 415 [[925 | 306 460

S |RNN* o, 933 - 2907 - - - - - - - -
RTNet [24] 2 |RNN &, 878 - 25.27 - - - - - - - -

= |RNN 887 977 2576 3068 414 | 413 994 930 534 917 566 700
GTNet E [CNN 77,57, 823 981 2381 3250 496 | 395 | 995 930 576 923 527 67.1
VA-Net (motion) Sl Sh 845 980 24.50 | 3170 [3637[12870 99.5 19550677 911 [169:97779:1

Z di 862 978 2471 3115 370|375 994 931 586 919 583 713
VA-Net (refinement) | & | — - 89S 979 2548 3136  3.67 | 346 199560 943 594 912 | 653 76.1

view (Fig. 7). We note the benefit of two-stream architecture against using one decoder in
and the baseline. Having two decoders allows the generator to focus on equal importance on
each of the foreground and background. Using foreground modalities helps the foreground
synthesis but cannot focus more on the overall synthesis.

RTNet [24] is not comparable to other methods since it uses the first frame of the target-
view xtjzl. To further highlight this, we use RTNet to synthesize )?{:1 instead of the ground-
truth and we notice a major quality drop. We use the depth a’t]:1 to fairly compare RTNet.The
foreground synthesized is blurry and the model cannot preserve the texture well (Fig. 9). The
first row of Fig. 9 shows the motion transition using a different method. Our VA-Net has
fewer artifacts around the body boundaries compared to RTNet. The foreground estimation
provides comparable foreground results as in GTNet which uses stronger body modalities.
VA-Net has a good FVD score, which shows the advantage of the proposed VA-LSTM that
can learn better the spatio-temporal feature &/ and leads to better overall visual quality.

We note a good FVD score of the proposed VA-Net which shows the advantage of the
proposed VA-LSTM that can learn better the spatio-temporal feature &/ and leads to better
overall visual quality. We also note a consistency between the FVD scores and the pose
estimation (Fig. 8).
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Figure 9: Modality based comparison. Results showing the proposed VA-Net against state-of-the
methods. We highlight the motion ability and the overall synthesis quality of each method.

5 Conclusion

We addressed the multi-view video synthesis from a feature learning perspective. We pre-
sented View Adaptive LSTM (VA-LSTM) that decomposes a view as a texture-less represen-
tation and texture mapping. We tackle the synthesis as a two-stage pipeline. The first stage,
motion network, uses the proposed VA-LSTM for the feature estimation. The second stage, the
refinement network, uses skip connections in the UNet model to correct artifacts. We show
that our estimated feature representation of the foreground obtains similar performance when
using the raw foreground modality. Experimental results show that by having fewer modality
the network can focus more on synthesizing the texture and have better refinement step.

Despite the great qualitative improvement in recent NeRF-based [10] methods, we be-
lieve that they are not directly applicable to our problem setting. For the foreground synthe-
sis, body-NeRF [10] relies heavily on the SMPL estimation. On high kinematic motion, the
estimation is very unstable, and thus taking the T-pose (rest pose) and warping it by motion
field using the vertices as support is very prone to error. In our case, the most important part
is synthesizing smooth motion transition which thanks to our VA-LSTM can handle while. It
is, however, an interesting direction to combine both approaches on multi-view video syn-
thesis.
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