

Implicit texture mapping for multi-view video synthesis

Mohamed Ilyes Lakhal*, Oswald Lanz, Andrea Cavallaro

mohamed.ilyes.lakhal@huawei.com

3. View Adaptive Network (VA-Net)

- VA-LSTM for target-view feature approximation
- Two-stage pipeline for synthesis and refinement

Motion network:

- Separate foreground and background synthesis
- Foreground feature estimation using the teacher-student approach (see Sec. 3)

Refinement network:

- UNet-like network to retain spatial information
- Use explicit edge-loss (Sobel-filter) penalization to encourage high-frequency details:

$$L_e = \left\| \mathbf{C}_x * x^j - \mathbf{C}_x * \hat{x}^j \right\| + \left\| \mathbf{C}_y * x^j - \mathbf{C}_y * \hat{x}^j \right\|$$

4. Results

Comparison with state-of-the-art methods

VDNat	CTNat	DTNat	VA Not	wl.	View-LSTM vs. VA-LSTM							
VDNet	GINet	KINet	vA-Net	x.	Model Modalities		s SSIM	M-SSIM	SSIM PSNR			
122 523 122					View-LSTM	d^j, s^j d^j, \mathcal{S}^j	.821 .833	.972 .975	23.18 23.44	29.70 30.35		
				11. 11. 11.	VA-LSTM	d^j, s^j d^j, S^j	.830 .845	.976 .980	23.78 24.50	30.89 31.70		
	-	-			Method	SSIM M	I-SSIM PS	SNR M-PSN	R	#param		
					View-LSTM	.821	.972 23	3.18 29.70	(14.3	36 + 22.41) N		
					≥ +AdaIN	.862	.978 24	.71 31.15		13.70 M		
1 10 1		The rest of	15 151 15	and the second	$\sum_{i=1}^{n}$ + branch	.851	.979 24	.14 31.63		15.47 M		
					$\mathbf{I} + \operatorname{conv}$.847	.979 24	.42 31.65		13.83 M		
		INC. INC. A REAL	and a second second	1 1 1	5 + sum	.842	.979 24	.37 31.63		13.70 M		
			The second second)SS						
14		1.	11	14	x'	ŵ,	G _x * x ^y		~	Error		

Pose estimation results

Method	Cat.	$ \Psi_{i \rightarrow j} $	Modality	SSIM	M-SSIM	PSNR	M-PSNR	FVD	L ₂	0.20	PCK 0.05	0.01	Precision	Recall	F1
PG ²	Image	CNN	s ^j	.582	.954	16.90	25.87	11.84	10.91	97.8	74.7	14.4	88.1	12.8	22.4
PATN		CNN	s^i, s^j	.534	.948	16.24	24.55	13.11	11.68	98.0	69.7	10.2	88.4	.1	17.8
XingGAN		CNN	s^i, s^j	.445	.933	13.32	23.29	14.47	26.41	89.6	17.8	.01	84.5	.1	.1
VDNet	en	RNN	d^j, s^j	.821	.972	23.18	29.70	5.78	4.37	99.3	92.4	51.2	91.0	55.3	68.7
Baseline	Ū	CNN	d^{j}	.813	.965	22.82	27.87	5.28	5.80	99.4	89.4	41.5	92.5	30.6	46.0
	on	RNN*	$x_{t=1}^{j}$.933	_	29.07	_	_	_	_	_	_	_	_	_
RTNet	Ioti	RNN	$\hat{x}_{t=1}^{j}$.878	_	25.27	_	_	-	_	_	_	_	_	_
	2	RNN	$d_{t=1}^j$.887	.977	25.76	30.68	4.14	4.13	99.4	93.0	53.4	91.7	56.6	70.0
GTNet	CNN stream RNN	CNN	$\mathcal{T}^{j},\mathcal{S}^{j},d^{j}$.823	.981	23.81	32.50	4.96	3.95	99.5	93.0	57.6	92.3	52.7	67.1
VA Net (motion)		DNN	\mathcal{S}^{j}, d^{j}	.845	.980	24.50	31.70	3.63	2.87	99.5	95.5	67.7	91.1	69.9	79.1
VA-Net (motion)			d^{j}	.862	.978	24.71	31.15	3.70	3.75	99.4	93.1	58.6	91.9	58.3	71.3
VA-Net (refinement)	Twe	-	—	.895	.979	25.48	31.36	3.67	3.46	99.6	94.3	59.4	91.2	65.3	76.1

References

[1] Lakhal M, Lanz O, Cavallaro A. View-LSTM: novel-view video synthesis through view decomposition. ICCV 2019

[2] Schatz K, Quintanilla E, Vyas S, and S Rawat Y. A Recurrent Transformer Network for Novel View Action Synthesis. ECCV 2020