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Abstract

High-resolution images are preferable in medical imaging domain as they signifi-
cantly improve the diagnostic capability of the underlying method. In particular, high
resolution helps substantially in improving automatic image segmentation. However,
most of the existing deep learning-based techniques for medical image segmentation
are optimized for input images having small spatial dimensions and perform poorly on
high-resolution images. To address this shortcoming, we propose a parallel-in-branch
architecture called TransResNet, which incorporates Transformer and CNN in a par-
allel manner to extract features from multi-resolution images independently. In Tran-
sResNet, we introduce Cross Grafting Module (CGM), which generates the grafted fea-
tures, enriched in both global semantic and low-level spatial details, by combining the
feature maps from Transformer and CNN branches through fusion and self-attention
mechanism. Moreover, we use these grafted features in the decoding process, increas-
ing the information flow for better prediction of the segmentation mask. Extensive ex-
periments on ten datasets demonstrate that TransResNet achieves either state-of-the-art
or competitive results on several segmentation tasks, including skin lesion, retinal ves-
sel, and polyp segmentation. The source code and pre-trained models are available at
https://github.com/Sharifmhamza/TransResNet.

1 Introduction

Segmentation is a fundamental problem in the domain of computer vision with numerous
practical applications, particularly in biomedical imaging analysis. Medical segmented im-
ages can be used in a wide range of applications, such as disease localization [33], tissue
volume estimation [40], and studying anatomical structure [29]. Accurate and precise seg-
mentation of medical images is a challenging task due to the nature of the complexity of 2D
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and 3D structures. Recent studies have demonstrated deep learning-based techniques as a
powerful building block to accomplish this task accurately [2, 5, 32].

Resolution of an image in medical diagnosis plays an important role. In general, high-
resolution images improve the results of a diagnostic method to determine the presence of
certain diseases. A high-resolution image contains rich semantic information and it provides
better chances for the extraction of useful information for a downstream task e.g. segmenta-
tion [17]. Many deep learning-based approaches have been proposed to perform automatic
medical image segmentation, such as segmenting organs [11], lesions [39], and tumors [15].
However, these existing techniques are primarily designed to segment low-resolution (small
spatial dimension) images, and they do not provide favorable results on high-resolution im-
ages due to discrepancies between sampling depth and receptive field size. With rapid tech-
nological revolution, medical image-capturing devices have undergone extensive modifica-
tions and advancements in recent years. Compared to the previous appurtenances, these
modern devices are capable of capturing images with higher resolution. This requires the
demand for deep learning-based segmentation framework that can process high-resolution
medical images efficiently and performs favorably.

Encoder-decoder based convolutional neural network (CNN) architectures have achieved
unprecedented performance in medical image segmentation for low resolution input images
[1, 27, 47]. Despite their impressive success, these approaches are still facing challenges to
capture global context details due to narrow and fixed receptive field. Similarly, vision trans-
formers (ViTs) [6, 21], which are efficient for modeling long-range dependencies and highly
parallelizable, are computationally prohibitive and have to down-sample the image before
processing. Because of the shortcomings of these architectures regarding high-resolution
images, the substantial solution is to design a single architecture that collectively captures
rich local and global information without increasing the computational complexity associ-
ated with high-resolution images and gives accurate segmentation results.

Inspired by deep learning-based high saliency object detection methods [36, 42, 44] for
natural images, we propose an architecture for high-resolution segmentation of medical im-
ages named TransResNet, as shown in Fig. 1. In this paper, we use two encoder mod-
ules, one is CCN-based for extracting local feature details, the other is transformer-based for
grasping global information. We introduce a Cross Grafting Module (CGM) to combine the
features maps with similar spatial size from both encoder branches. CGM generates grafted
features which are enriched in both local and global semantic cues. We use these grafted
features in the decoding process for the prediction of segmentation masks. In summary, our
main contributions are as follows:

* We propose a framework named TransResNet for efficient segmentation of high-
resolution medical images by using two encoder backbones.

* We introduce Cross-Grafting Module (CGM), to combine the low-level spatial features
(from the CNN branch) and high level semantic information (from the Transformer
branch) through fusion and self-attention mechanism.

* We have performed extensive experiments on ten datasets for three medical image seg-
mentation tasks. Our experimental results demonstrate that the proposed approach out-
performs state-of-the-art (SOTA) methods on high-resolution medical imaging datasets
and competes comparably on datasets containing mixture of low and high resolution
images.
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Figure 1: An overview of the architecture of TransResNet for high-resolution medical image segmentation. Our
TransResNet uses the parallel branches from Swin-transformer and Resnet-18 backbones as encoders. The core
module of our architecture is Cross Grafting Module (CGM), explained briefly in the Fig. 2. The decoder module
aggregates the flow of feature input maps from swin block, CGM block, and resnet block. D1, D2, and D3 are
subblocks of the decoder with their structure on the right side.

2 Related Work

Segmentation is not a trivial problem, especially in the biomedical imaging domain. A lot of
studies have been proposed in the past that focus on low-level image information to predict
the segmentation mask. The inefficiency of these methods in capturing rich semantics makes

their performance inconsistent in complex settings. In this regard, we discuss a few works

on biomedical image segmentation.

Medical Image Segmentation with CNN-based Architectures: Extensive studies have

been proposed predominantly with various CNN-based architectures for medical image seg-

mentation tasks. Some studies have designed the model architecture in an encoder-decoder
style, for example, U-net [30] and its variants [1, 27, 47], while other works have integrated

CNN extracted features with a self-attention mechanism in the decoder module to boost the

network performance for capturing global interaction [7, 41]. Despite their excellent perfor-

mance, these approaches are limited in their ability to capture global semantic information

due to narrow receptive fields, as the kernel size of CNN-based techniques is typically fixed,

making it more challenging to predict segmentation masks accurately. Our work proposes

a method which allows the receptive field of the CNN backbone to capture rich semantic

information from high-resolution input images.

Medical Image Segmentation with Vision Transformers: Transformers, which were pri-

marily developed for the natural language processing task [37], have made marvelous achieve-
ments in the field of computer vision for downstream tasks [6, 21]. Despite transformer's

powerful global modeling capabilities, they are limited in explicitly capturing rich semantic

details that are essential for biomedical imaging analysis [4]. The first transformer-based

medical image segmentation framework named TransUnet, proposed by Chen et al. [4], uses

a transformer backbone in the U-Net style to extract global features in the encoder block

and upsample these encoded features in the decoder block. In the TransFuse framework,

Zhang et al. [46] combines CNN and Transformer in a parallel manner to grasp the local

and global information for a similar task. Despite their success, these methods are suitable

for low-resolution images and tend to ignore local semantic information in high-resolution
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images. Thus, our proposed architecture aims to mitigate this issue by incorporating novel
Cross Grafting Module (CGM) which captures both global and rich semantic details in high-
resolution medical images.

3 Methodology

The concrete architecture of proposed network is shown in the Fig. 1. The proposed network
follows the encoder-decoder design architecture consisting of two encoders and one decoder.
The encoder includes the ResNet-18 [16] and Swin-B [21] as backbones, while decoding
phase comprises of three sub-stages. The feature maps from both encoders are grafted in a
Cross Grafting Module (CGM), which emphasises on the salient regions, and make network
learn precise pixel-level details. We will discuss each part in the following subsections.

3.1 Encoder Module

As explained earlier, our proposed architecture is based upon two encoding streams: a CNN
and a vision transformer (ViT). The main reason for using two encoding streams is to cap-
ture both local and global information, which makes the network learn salient features more
accurately. The CNN-based encoder captures the low-level feature representations from
high-resolution input images, while the ViT-based encoder is used to learn the global se-
mantic information from low-resolution input images as demonstrated in Fig. 1. During
the encoding phase, images (I € Rf*W>C) having different spatial dimensions are passed
to both encoders: Iz € R1024x1026x3 anq J¢ € R?24%2243 gre passed through ResNet-18 and
Swin-B encoders respectively. Using two encoder networks with multi-scale input size con-
sumes massive amount of computational resources to generate feature maps. To handle this
issue, we have discarded some layers from Resnet-18, and Swin-B network. With prior
knowledge from the literature [16], we know that there are five feature maps generated by
Resnet-18, denoted as {Ry|i € (1,2,3,4,5)}. The first stage of Resnet-18 uses a large ker-
nel size of 7 x 7 to extract feature maps. In our case, the input (Iz € R1024x1024x3) pagsing
through Resnet-18, is larger in size, thus resulting in huge demand of computational ca-
pacity to generate feature maps for this stage. We relinquish this stage while keeping the
last four stages of Resnet-18, {Ry|i € (2,3,4,5)}, which learn more complex features and
become computationally less expensive due to gradual down-sampling of the feature maps
at each stage, resulting in {Ry, € R %2 X (22 1)}?:2 . In a similar fashion, we also fol-
low similar approach with the Swin-B transformer. As there are four stages in Swin-B, we
drop the last stage after the patch merging block. We utilize the feature maps generated
from the output of first three stages and patch merging block of the fourth stage of Swin-
B, denoted as {Sy|i € (1,2,3,4)}, with their feature embedding dimension represented as

56 ., 56" i . . .
{S;, e RE-T 3TV IN3  and s, € RI4X14x512 | A the spatial dimensions of feature

maps Ry, with dimension (32 x 32 x 512), and Sy, with dimension (28 x 28 x 256), are very
close to each other, we select these features for grafting in the CGM.

3.2 Cross Grafting Module (CGM)

We propose a new module, Cross Grafting Module (CGM), in such way that network ef-
fectively adapts the local and global semantic representations. To accomplish this task, we
select the features maps R, € R ' ,and Sy, € R Daw extracted from the Resnet-
18 and Swin-B encoders respectively. As transformers have shown excellence performance
at modeling long range relationships [6], Sy, is responsible for providing global semantic
detail, while Ry, contributes towards local information due to CNN's excellent low-level
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Figure 2: An overview of the architecture of the proposed Cross Grafting Module (CGM). The CGM module
takes dual input i.e., the feature maps from Swin-transformer, and Resnet branches, and outputs the grafted features
through fusion and self-attention mechanism. These grafted features are used in the decoding process. The module
also generates a cross-transposed attention matrix (CTAM), which is used in the objective function.

feature learning capabilities. But the major issue is the discrepancy between receptive field
of feature maps, as Ry, is down-sampled to match with receptive dimension of Sg,, thus
produces the noisy output.

To alleviate this issue We apply operator A (deﬁned below) on the feature maps (Ry, €

RH xW'xC .Sy, e RH xW'xC" ) and obtain (RfERIXHWC S; e RIH W' ) (see Eq. 1).
Next, we apply layer normalization on (Rf,S) and generate query (Q), key (K), and value
(V) projections from transformer and CNN branches separately (see Eq. 2 and Eq. 3). By
fusing (element-wise addition) the tensors in each tuple i.e. (Qg,Qs), (Kg,Ks), (Vg, Vs), we
achieve the resultant tensors with enriched local details, thus mitigating the effects of noise.
For learning of global semantic information, we apply the self-attention (SA) mechanism
that efficiently calculates the point-wise relationship between these resultant tensors. Grafted
features (Z) i.e. the output of CGM, is used in the decoding process as shown in Fig. 1, but
spatial dimension of SA output (X) has contradiction with the input dimension of decoder
flow. To make it identical, we apply linear projection layer to SA output, reshape it to
original size and feed it to convolution layer. During the whole process of grafting, the
spatial dimension keeps on changing, motivating us to use shortcut connections. In order to
enhance information flow and facilitate the training process, we use two skip connections
before final output (Z) as shown in the Fig. 2. Overall, the whole grafting process with
intermediate steps is expressed as follows: A
Ry =ARpg) 5 Sp=A(Sp),
R=LN(Ry) ; S=LN(Sy),
Qr=W9 ; Kg=WER ; Vx=W"'R,
Qs=W9 : Kg=WK§ ; vg=W'S§,
Q=0Qr+Qs ; K=Kgr+Ks ; V=Vg+Vg, 3)

X:V-soﬁmax(Q-KT/a),

(D

2)

Y = linear(X) + pool(Ry & Sy), S
Z=Y+com(Y),
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where Ry, and Sy, are the input feature maps and A = Flatten <— GELU <— BN <« Conv(-)
is an operator that takes an input and performs convolution, batch normalization, GELU
activation and flattening layer sequentially. Grafted feature (Z) is the output of CGM used
in the decoding process. Here, (W2, WK W) are the weights of linear layers, « is a scaling
parameter used to control the magnitude of dot product of Q and K tensors, and (LN, linear,
pool) represent layer-normalization, linear and pooling layers respectively. @ denotes the
concatenation used to amalgamate the flatten output of transformer and resnet branches.
Additionally, the dot product interaction of query and key projections generates the attention
matrix A = softmax (Q KT / a), which is transposed and added to the itself to form a cross
transposed attention matrix which is defined by Eq. 5 as follows:

CTAM = GELU(BN(Conv(A +A"))). )

CTAM matrix is used in the objective function (see Sec. 3.4).

3.3 Decoder Module

The flow of feature maps in the decoder block of our proposed architecture is illustrated
in Fig. 1. The decoder module first receives the flow of features from the Swin-B branch,
followed by the feature grafting module, and finally the ResNet-18 branch in a staggered
pattern. The decoder block is divided into chunks of three different sub-blocks, denoted as
D1, D2, and D3, which aggregate the flow of features from these ResNet-18, Swin-B and
CGM branches.

3.4 Objective Function

The entire network is trained end-to-end with the joint objective function, which includes
the segmentation loss L., for segmentation maps, attention loss L, for the cross-transposed
attention matrix (CTAM) map , and auxiliary loss L, for deep supervision to improve
the gradient flow by supervising the ResNet-18 and Swin-B transformer branches, which is
defined as follows:

1 N “
Lseg = §{¢bce(MpmaMgt)+¢iou(Mpm;Mgt)}7 (6)
Latt = ¢1§2@(CTAMmapaMgtﬂmp)a (7)
1 A X 1 A X
Lo = E{‘pbce(MRaMgt) + ¢iou(MR>Mgf)} + §{¢bce(MS’Mgf) + ¢i0“(MS’Mg’)}’ ®)
Liotar = Lseg + Lo + )LLuux; &)

where @pce, Qiou, and ¢, denote the binary cross entropy function, intersection-over-union
function, and weighted binary cross entropy function respectively. Here, My, Mpm, (MR,
Ms), and M, stmap ar€ ground truth mask, predicted segmentation mask, salient prediction maps
extracted from the transformer, and resnet branches which are used in the grafting module,
and attention matrix map generated from ground truth. Ground truth attention matrix map
My, 1s achieved by matching the shape of the ground truth mask (M) to that of CTAM
via down-sampling, flattening, and taking the self dot-product of flattened vector. The A is
the weight parameter used to balance the auxiliary loss L, calculated from two encoder
branches.

4 Experiments

We evaluate the effectiveness of our proposed model TransResNet on the three different
segmentation tasks: (a) skin lesion segmentation (2 datasets), (b) retinal vessel segmentation
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(3 datasets), and (c¢) polyp segmentation (5 datasets). More details on datasets, training
settings, and additional quantitative and visual results have been presented in the following
subsections. We have highlighted the best and the second-best highest scores in the result
Sec. 4.4 with different evaluation metrics.

4.1 Datasets

Skin Lesion Segmentation: In order to segment skin lesions, we have used two publicly
available benchmark datasets with the majority of high-resolution images (resolution > 1K):
ISIC-2016 [14], and PH2 [24]. The ISIC-2016 has the train-validation split of samples:
900/379, while the PH2 database includes 200 samples. As most of the SOTA methods use
the same split, therefore, we also keep the same sample size for the fair evaluation of our
model. To test the generalization ability and robustness of our method, we use PH2 dataset.
Retinal Vessel Segmentation: The proposed method is evaluated using three publicly ac-
cessible retinal fundus imaging datasets: HRF [26], IOSTAR [45], and CHASE_DBI1 [9].
The HRF database has a total of 45 samples, each image with a resolution of 3504 x 2306,
whereas IOSTAR contains 30, and CHASE_DB1 has 28 image samples, respectively. For
fair comparison, we also follow the same number of train-test split as mentioned in these
papers [10, 19, 20, 25].

Polyp Segmentation: A total of five polyp segmentation benchmark datasets are used to
evaluate the performance of TransResNet: Kvasir [18], CVC-ClinicDB [3], CVC-ColonDB
[35], Endoscene [38], and ETIS [34]. To ensure fairness, we keep the same number of train-
ing and testing images as used in [7, 41, 46], i.e. 1450 training images from Kvasir, and
CVC-ClinicDB, while 798 testing images from all of the five datasets. These datasets are
highly versatile benchmark datasets with mixture of low and high resolution images.

4.2 Implementation Details

We have implemented TransResNet using the Pytorch [28] framework and NVIDIA A100-
SXM4 GPU with a maximum of 36GB of memory to accelerate the smooth training pipeline.
All the input images have been resized to 1024 x 1024, and various data augmentations
have been applied, including horizontal flip, vertical flip, rotation, and random brightness
to increase the data diversity, volume, and avoid overfitting. The entire network is trained
end-to-end with a Stochastic Gradient Optimizer (SGD) [31] algorithm with the initial learn-
ing rate of 0.03, which gradually decreases with cosine annealing [22]. We use different
hyper-parameter settings of weight decay (5e~2 to 7e~>), and momentum (0.9 to 0.999) for
different datasets. Due to the scarcity of training data samples, we train the network for a
large number of epochs, for example, for the retina segmentation task, the network is trained
for 3000 epochs and 200 epochs for other tasks with batch size of 8§ and 16. We also use the
Probability Correction Strategy (PCS) [41] during inference to improve the final prediction.
The detail of Probability Correction Strategy (PCS) have been provided in Appendix B.

4.3 Evaluation Metric

We evaluate the performance of our best model using standard medical image segmentation
metrics, i.e. mean dice coefficient (mDice), mean Intersection-over-Union (mloU), and mean
F1 (mF1) scores.

4.4 Quantitative Results

We have evaluated TransResNet on three different segmentation tasks as discussed in Sec.
4.1, to demonstrate its effectiveness. We have compared our method with six SOTA meth-
ods for skin lesion segmentation, four for retinal vessel segmentation, and seven for polyp
segmentation tasks.
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Results of Skin lesion Segmentation: We report our results for the skin lesion segmenta-
tion task on two datasets and compare them with six SOTA methods. Table 1, shows that
our model has achieved the highest performance on both validation ISIC-2016, and test-PH2
datasets on both evaluation metrics. Since these datasets have higher resolution images, the
model has captured rich semantic information, resulting in enhanced performance. In addi-
tion, the samples from the PH2 dataset are not part of the training phase, which indicates that
our model has better generalization ability and robustness towards skin lesion segmentation
task than other SOTA approaches.

Results of Retinal Vessel Segmentation: We compare TransResNet with four SOTA meth-
ods on three high-resolution fundus imaging datasets for the retinal vessel segmentation
task. Table 2, demonstrates that our method has surpassed all the other SOTA methods by a
margin of 1.4%, 1.0%, and 0.9% in terms of mean F1 (mF1I) score on HRF, IOSTAR, and
CHASE_DB/1 datasets respectively, without applying any pre-processing technique on these
datasets.

Methods | ISIC-2016 [ test-PH2 Methods ‘ HRF ‘ IOSTAR ‘ CHASE
[ mloUt | mDicet | mloUt | mDicet ‘ WEI ‘ mEIT ‘ mFIT

U-Net [30] 0.825 | 0.878 | 0.739 | 0.836

U-Net++ [47] 0.818 | 0.889 | 0.812 | 0.889 DRIU [23] 0.783 0.825 0.810

Attn U-Net [27] | 0.797 | 0.874 | 0.695 | 0.805 HED [43] 0.783 0.825 0.810

CE-Net [13] 0.842 | 0.905 | 0.824 | 0.894

CA-Net [12] 0.807 | 0.881 | 0.751 | 0.846 M2U-Net [20] | 0780 0817 0802

TransFuse [46] | 0.840 | 0.900 | 0.823 | 0.897 U-Net [30] 0.788 0.812 0.812

TransResNet | 0.843 | 0.907 | 0.831 | 0905 TransResNet | 0.802 | 0835 0.821

Table 1: Quantitative results on skin lesion segmen- Table 2: Quantitative results on retinal vessel segmen-
tation datasets compared with six SOTA methods. The tation datasets compared with four SOTA methods. The
red and green color cells represent the highest and the red and green color cells represent the highest and the
second highest scores respectively. Performance is mea- second highest scores respectively. Performance is mea-
sured by mean Dice and mean IoU scores. sured by the mean F1 score.

Results of Polyp Segmentation: The performance of TransResNet for polyp segmentation
has been evaluated and compared with seven SOTA methods across five different benchmark
datasets. The quantitative results are shown in Table 4. As highlighted from the scores, our
proposed architecture did not surpass some SOTA methods on polyp segmentation tasks ex-
cept for the ClinicDB dataset. In addition, the mean dice scores of our method on Kvasir
and EndoScence datasets are also very close to the highest and second highest SOTA meth-
ods, i.e., SANet, and TransFuse, with a minor difference of 0.037 on Kvasir, and 0.028 on
ColonDB datasets respectively. We also find that our method performs unfavorably and does
not generalize on ColonDB and ETIS datasets because these datasets have lower image res-
olution. Our method is better suited for high resolution images. We have provided detailed
information and analysis in Appendix A about datasets.

Model Performance on different Image Resolu-

. . Train Ii Test Ti Model
tions: From the segmentation results of OUI Pro- gemtior. | Resolutin e S
posed method, we have analyzed four cases regarding e caled | Figher preases

. . . ower & upscale igher ecreases
the model performance based on input images during Higher Lower & upscaled | Increases
Lower & upscaled | Lower & upscaled | Slightly decreases

training and inference, which is summarized in Table

3. Given the results, one can conclude that image res- Table 3: Analysis of model performance
olution is a major issue in the context of model perfor- P2sed on the image resolution during training

. .. . . and inference. Lower resolution images are
mance. Our model design is highly suitable for high o cated 10 1024 x 1024.

resolution images.
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Table 4: Quantitative results on polyp segmentation datasets compared with seven SOTA methods. The red and
green color cells represent the highest and the second highest scores respectively. Performance is measured by mean
Dice and mean IoU scores. "-" indicates results are not available.

Methods \ Kvasir \ ClinicDB \ ColonDB |  EndoScene | ETIS
‘ mDicet ‘ mloUT ‘ mDiceT ‘ mloUT ‘ mDiceT ‘ mloU?T ‘ mDicet ‘ mloUT ‘ mDiceT ‘ mloU?T
U-Net [30] 0.818 0.746 0.823 0.750 0.512 0.444 0.710 0.627 0.398 0.335

U-Net++ [47] 0.821 0.743 0.794 0.729 0.483 0.410 0.707 0.624 0.401 0.344
ResUNet++ [1] 0.813 0.793 0.796 0.796 - - - - - -
SFA [8] 0.723 0.611 0.700 0.607 0.469 0.347 0.467 0.329 0.297 0.217

PraNet [7] 0.898 0.840 0.899 0.849 0.712 0.640 0.871 0.797 0.628 0.567
SANet [41] 0.904 0.847 0.916 0.859 0.753 0.670 0.888 0.815 0.750 0.654

TransFuse [46] | 0.918 | 0.868 | 0.918 | 0.868 | 0.773 | 0.696 | 0902 | 0.833 | 0.733 | 0.659
TransResNet | 0.881 | 0.824 | 0917 | 0.861 | 0.685 | 0.604 | 0.874 | 0.804 | 0.564 | 0.493

4.5 Qualitative Results

The Fig. 3 shows predicted segmentation masks for some input images for each segmenta-
tion task. From the predicted masks, we can easily conclude that our method has not only
performed an accurate prediction but also suppressed background noise. Additional visual

2 | T *eN\!

results have been provided in Appendix C.

IMAGES GT

IMAGES

Figure 3: Qualitative results on all three segmentation tasks. The figure shows an example image, ground
truth (GT) and predicted (PRED) segmentation mask for the skin lesion segmentation task (row 1), the polyp
segmentation task (row 2) and retinal vessel segmentation task (row 3).

4.6 Ablation Study

In order to evaluate the effectiveness of the proposed method, we analyze our approach
using two ablative studies, which are as follows: (a) Effect of network performance by using
different feature map pairs in Cross Grafting Module (CGM) and (b) Effect of network
performance by eliminating each module from the proposed architecture.

Ablation Study for Grafted Features: For better design of Cross Grafting Module (CGM),
we conduct an ablation study, in which we change the feature map pairs used in the grafted
module and study its impact on the performance of the network. In Table 5, we present the
quantitative results for two datasets: ISIC-2016 and PH2. From the Table 5, we observe
that the performance gradually increases and then tends to decrease, indicating that the pair
(Ry,, Sy,) is suitable for grafting. The main reason is that the spatial sizes of both feature
maps are very close, and the information captured by each model corresponds to each other,
increasing the network performance through grafting.

Ablation Study for Elimination each Module: The proposed framework comprises of
Swin-B transformer, Resnet-18 backbone, and Cross Grafting Module (CGM) that are used
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for learning both local and global features. To experimentally evaluate the effect and con-
tribution of each module in the generalization performance, we selectively remove one of
the modules, as shown in Table 6. The qualitative finding suggests that removing any of the
modules from the architecture results in a performance degradation.

Feature Pairs | Spatial Dimensions | val-ISIC-2016 | test-PH2 ResNet-18 | Swin-B CGM__ val-ISIC-2016 | test-PH2

‘ ‘ mloUT ‘ mDice?l ‘ mloUT ‘ mDicet ‘ mDice?t ‘ mloU?T ‘ mDicet ‘ mloUT
(Ry, ,Sp) (32x32,56x56) | 0.829 | 0.881 | 0.824 | 0.881 v X X 0.879 | 0.819 | 0.879 | 0.814
(Ry, ,Sp,) (32x32,28x28) | 0.843 | 0.907 | 0.831 | 0.905 X v X 0.881 | 0.821 | 0.884 | 0.806
(Ry, . Sp) (32x32, 14x14) 0.836 | 0.892 | 0.825 | 0.896 v v X 0.889 | 0.832 | 0.900 | 0.821
(Ry, ,Sp) (32x32,14x 14) | 0.819 | 0.862 | 0.812 | 0.874 v v v 0.907 | 0.843 | 0.905 | 0.831

Table 5: An ablation study for TransResNet on ISIC-  Table 6: An ablation study to analyze the effect on the
2016, and PH2 datasets for selection of feature pairs  overall performance of the proposed method by elimi-
from Swin-transformer and ResNet for grafting. nating each module.

5 Conclusion

In this paper, we present the TransResNet architecture for the segmentation of high-resolution
medical images. A key component of TransResNet is the Cross Grafting Module (CGM),
which is used to learn grafted features with rich semantic and global information, allowing
accurate prediction of segmentation masks during decoding. Extensive experiments on ten
different datasets for three medical segmentation tasks indicate that our architecture shows
better results on high-resolution images. One of the main limitations of our architecture,
is that it is computationally expensive. With our research work, we intend to introduce the
scientific community with Al-based model for high-resolution medical image segmentation.
This will open new directions for conducting research on this problem as the demand for
learning-based models with capability of efficiently processing the high-resolution images
is expected to rise. Future direction in this line of research includes extending the proposed
method to multi-class medical image segmentation and making it computationally less ex-
pensive.
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