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Abstract

Medical image annotation typically requires expert knowledge and hence incurs time-
consuming and expensive data annotation costs. To alleviate this burden, we propose a
novel learning scenario, Exemplar Learning (EL), to explore automated learning pro-
cesses for medical image segmentation with a single annotated image example. This
innovative learning task is particularly suitable for medical image segmentation, where
all categories of organs can be presented in one single image and annotated all at once.
To address this challenging EL task, we propose an Exemplar Learning-based Synthe-
sis Net (ELSNet) framework for medical image segmentation that enables innovative
exemplar-based data synthesis, pixel-prototype based contrastive embedding learning,
and pseudo-label based exploitation of the unlabeled data. Specifically, ELSNet intro-
duces two new modules for image segmentation: an exemplar-guided synthesis module,
which enriches and diversifies the training set by synthesizing annotated samples from
the given exemplar, and a pixel-prototype based contrastive embedding module, which
enhances the discriminative capacity of the base segmentation model via contrastive rep-
resentation learning. Moreover, we deploy a two-stage process for segmentation model
training, which exploits the unlabeled data with predicted pseudo segmentation labels.
To evaluate this new learning framework, we conduct extensive experiments on several
organ segmentation datasets and present an in-depth analysis. The empirical results show
that the proposed exemplar learning framework produces effective segmentation results.

1 Introduction
Medical image analysis is becoming increasingly important for clinical diagnosis and surgi-
cal planning due to the rapid advancement of medical imaging technologies [7, 27]. Notably,
medical image segmentation is one of the critical steps in quantitative medical image anal-
ysis, aiming to automatically identify the target region from medical images pixel-by-pixel
[10, 12, 23]. Fully supervised deep neural networks have been demonstrated to yield desir-
able segmentation results by using large amounts of labeled training data [3, 29]. However,
obtaining abundant annotated medical images at the pixel-level entails substantial labour and
financial expenses because annotating medical images requires the knowledge of clinical ex-
perts that is not always available. To reduce the annotation cost, several techniques have been
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Figure 1: Exemplar learning vs. semi-supervised segmentation and few-shot segmentation.
In semi-supervised segmentation, multiple labeled samples and many unlabeled samples are
present. In few-shot segmentation, many support and query samples are available from the
base categories. By contrast, only one labeled sample and many unlabeled samples are
available in exemplar learning.

developed to perform medical image segmentation with less annotated data [4, 8], including
semi-supervised segmentation [13, 18, 30] and few-shot segmentation [20, 26].

Although some notable improvements have been achieved, current solutions are still un-
able to eliminate the labelling conundrum. Most few-shot segmentation methods rely on
extensive auxiliary training datasets with exhaustive annotated data to transfer knowledge
from the support set to the query set [20, 28]. Semi-supervised segmentation methods usu-
ally focus on exploiting the consistency property of unlabeled data, but they still require a
nontrivial portion of the densely annotated data [11, 22, 30]. We observe that the images for
medical segmentation tasks often contain variations of the same set of organ categories, while
a proper example image can cover all the parts for the whole organ category set. Motivated
by this observation, we propose a novel learning scenario called Exemplar Learning (EL) to
set up the working environment for a new set of medical image segmentation techniques that
require only one single expert annotated image. The differences between this new EL setting
and the previous semi-supervised segmentation and the few-shot segmentation settings are
illustrated in Figure 1.

The fundamental challenges for exemplar learning lie in the following two aspects: (1)
Data diversity is severely deficient, and the number of foreground-background pixels is im-
balanced in medical image datasets. Since only one annotated image is available, the model
can easily be overfitted to the labeled sample. (2) The contrast level between the organ and
the background is low, and the differences among multiple organs’ appearances are barely
discernible, easily resulting in the lack of discriminative capacity for the segmentation mod-
els. This phenomenon makes it difficult to distinguish the boundaries between organs, lead-
ing to over-segmentation issues. The fact that humans can learn by analogy [1, 21, 36]
motivates us to address the abovementioned challenges by enriching the sample diversity
and the discriminability of models.

In this paper, we propose a novel framework, ELSNet, for learning to segment medi-
cal images effectively with only one annotated image. ELSNet enriches the diversity of
the labeled data by synthesizing training data and enhances the discriminability of the base
segmentation model by performing pixel-prototype based contrastive embedding learning.
Specifically, given the exemplar image with all organ categories labeled, we first devise an
exemplar-guided synthesis module (ESM) to enlarge our training set by taking crops of fore-
ground organs and pasting them through various transformations onto different background
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images. This can increase the invariance of organ representations to different backgrounds,
while enriching the diversity of the sample. Next, we design a pixel-prototype based con-
trastive embedding module (PCEM) to decompose the organs into distinct and consistent
parts by capturing homogeneous components of the same type through contrastive embed-
ding learning. This module enables pixels belonging to the same organ to be similar, in con-
trast to the case where pixels belong to different organs, and hence is expected to improve
the discriminability of the segmentation model. Moreover, we deploy a two-stage process
for segmentation model training, which exploits the unlabeled data with predicted pseudo
segmentation labels to further improve the segmentation model. The main contributions of
our paper can be summarized as follows:

• We propose a novel learning scenario, Exemplar Learning, which investigates medical
image segmentation with a single annotated image.

• We propose a novel ELSNet framework to segment medical images in the EL scenario
by creating exemplar-based synthetic data, learning pixel-prototype based contrastive
embeddings, and exploiting unlabeled data with pseudo-labels.

• Experimental results on two medical image segmentation datasets show that the pro-
posed ELSNet can effectively perform the medical semantic segmentation task.

2 Related Work

Semi-Supervised Medical Image Segmentation. Semi-supervised semantic segmenta-
tion has received increasing attention to train models by reducing the mask labeling cost
[13, 15, 24, 25, 37]. The technique has also been applied to the field of medical image
segmentation [11, 18, 22, 30]. Reiß et al. [18] proposed a multi-label deep supervision
model to supervise low-resolution features and applied it to multiple medical supervision
signals. Wu et al. [30] presented a semi-supervised polyp segmentation model by collabora-
tive and adversarial learning. Moreover, Seibold et al. [22] used labeled images as references
to generate more accurate pseudo-labels. Luo et al. [11] proposed a dual-task-consistency
semi-supervised framework for medical image segmentation. These semi-supervised meth-
ods require multiple annotated images for model training. By contrast, we propose to train
segmentation models with only one annotated image, which is more challenging.

Few-Shot Medical Image Segmentation. Few-shot segmentation has been exploited in
the medical image domain [2, 14, 16, 32, 35]. Most of these methods require many base cat-
egories to be annotated during the training phase and require fine-tuning for unseen classes.
SE-Net [20] and RP-Net [28] focus on designing models to segment unseen classes without
retraining. Sli2Vol [31] propagated the 2D image segmentation with an affinity matrix di-
rectly to reconstruct the rest of the image in 3D volumes in a self-supervised manner. Ouyang
et al. [17] generated superpixel-based pseudo-labels and used the adaptive local prototype
information for training the self-supervised FSS framework. These methods require the sup-
port set in the test phase, and the predicted masks only contain foreground and background
categories. By contrast, the proposed exemplar learning does not require a support set, and
the predicted masks have semantic information.
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Figure 2: An overview of the proposed ELSNet framework. First, ESM enriches the train-
ing data diversity. In stage 1, the segmentation network Ns is trained on the exemplar and
synthetic data with PCEM and then used to generate the pseudo-labels of unlabeled data.
In stage 2, the exemplar, synthetic and unlabeled data are all used to train the segmentation
network Ne with PCEM.

3 Proposed Method
In the setting of the exemplar learning, one labeled training image (i.e. Exemplar) and T
unlabeled training images are given, and denoted as DE = (Ie,Ye) and DU = {(It

u)}T
t=1. An

input image is defined as I ∈ R1∗H∗W , and the label is defined as Ye ∈ {0,1}K∗H∗W , where
K,H,W are the number of categories in the dataset, height and width of the input image, re-
spectively. In this setting, the single exemplar image contains one segmentation instance for
each category. We propose an Exemplar Learning-based Synthesis Net (ELSNet) framework
to train a good segmentation model from the given input images.

The overall architecture of the ELSNet is illustrated in Figure 2. We first create the syn-
thetic dataset from the given exemplar by the exemplar-guided synthesis module, which en-
riches and diversifies the training set. Moreover, we deploy a two-stage process for training
the segmentation model by using the pixel-prototype based contrastive embedding module,
which enhances the discriminative capacity of the base segmentation model and exploits the
unlabeled data with predicted pseudo segmentation labels. In the first stage, a synthetic seg-
mentation network Ns is trained on the exemplar and the synthetic dataset, which is then
used to generate pseudo-labels for unlabeled data. In the second stage, an exemplar learning
segmentation network Ne is trained on the exemplar, the synthetic dataset and the unlabeled
dataset (with pseudo labels). The two segmentation networks share the same structure, con-
sisting of an encoder fencoder : R1∗H∗W →Rc∗h∗w and a decoder fdecoder : Rc∗h∗w →RK∗H∗W ,
where c,h, and w are the channel, height, and width of the embedding matrix, which is repre-
sented as X = fencoder(I). The decoder’s output is used to produce the segmentation masks.
Below we elaborate the two modules of the ELSNet framework and the training process.



EN, GUO: EXEMPLAR LEARNING FOR MEDICAL IMAGE SEGMENTATION 5

3.1 Exemplar-Guided Synthesis Module
This module aims to synthesize the segmentation instance of each label category from the
single exemplar into various backgrounds, thus creating a synthetic training dataset. The
diagram of this module is shown in Figure 2. Given an exemplar, we first obtain the segmen-
tation instance of each organ according to their annotations, then transform them to imitate
the various appearances of the organs in medical images, and finally paste the transformed
organs onto background images. We define a series of geometric transform operations and
intensity transform operations as Tg and Ti, respectively. Then in principle, a synthetic sam-
ple Is and its label Ys can be generated by performing different transformations on Ie and Ye
as follows:

(Is,Ys) = Ω(Tg(Ti(Ie)),Tg(Ye),Tg(Ti(Ib)), (1)

where Ω represents the proposed exemplar-guided synthesis operation that copies, trans-
forms and pastes the exemplar onto the selected background image Ib. We choose black
images and images that do not contain any organs as background images. Meanwhile, the
corresponding label Ys is generated based on the transformed Ye. By this means, the synthetic
training dataset can be created by using Eq. (1) with sufficient variations from one exemplar.

To better accommodate various transformations, we propose to implement the Ω opera-
tion in a category-wise manner. First, we segregate the exemplar Ie into different categories
of organs as follows:

Ik
e = Ie ⊗Y k

e , (2)

where Y k
e and Ik

e indicate the mask and the exemplar instance for the kth organ category,
respectively. Then, for the segmentation instance of each category from the single exemplar,
geometric and intensity transformations are applied to imitate scale change, rotation, blur
and intensity variations across the dataset. Finally, we compose the transformed exemplar
organs and paste them onto the background images, creating a synthetic sample. Following
this procedure, a synthetic dataset DS = {(Ib

s ,Y
b
s )}B

b=1 can be created, where Ib
s ∈ R1∗H∗W ,

Y b
s ∈ {0,1}K∗H∗W and B is the number of synthetic samples. With this synthetic dataset, a

segmentation model can be trained without extra annotation effort. Moreover, as the basic
features of all organs are present in the exemplar image, the synthetic dataset can overcome
the limitations of previous works that rely on unrealistic virtual data [5, 6].

3.2 Pixel-Prototype Based Contrastive Embedding Module
In this module, we calculate prototypes of different categories of organs and deploy a con-
trastive learning paradigm over the prototypes to improve the discriminability of the model.
Specifically,the organ prototypes are calculated based on the predicted masks from the de-
coder output. As previously stated, X represents the embedding features of the input image,
and we use fdecoder to generate the predicted mask Ŷ as follows:

Ŷ = argmax(so f tmax( fdecoder(X))), (3)

where so f tmax denotes the class-wise softmax function and Ŷ ∈ RK∗H∗W is the predicted
label indicator matrix. We resize the predicted mask Ŷ ∈ RK∗H∗W to the same size as the
embedding features X via bilinear interpolation, which is denoted by Ŷx ∈ RK∗h∗w. With
Ŷx, we leverage global average pooling [33, 34] over the foreground to integrate the pixel
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features belonging to the same category into a feature vector, which is seen as the prototype
of the corresponding organ. The prototype for the kth category, vk, is computed as follows:

vk =
∑(i, j) X (i, j)

1[Ŷ (k,i, j)
x ̸= 0]

∑(i, j)1[Ŷ
(k,i, j)
x ̸= 0]

, (4)

where (k, i, j) indicates the spatial location index of the kth category and 1 represents the
indicator function. The prototypes computed through the masked average pooling can extract
global object representations for the target organs.

To maximize the representation similarity of the same organ among different images
while simultaneously minimizing the similarity of different organs, we propose to deploy a
contrastive learning loss to learn discriminative embeddings. We perform the calculation in
a batch of N samples (e.g., a mini-batch). Specifically, for each category k and a prototype
vn

k from the nth image, we randomly select a prototype vm
k ∈ {vi

k, i ̸= n|vn
k} from the other

N −1 images in the current batch as a positive sample, and use the prototypes from all other
categories of the N − 1 images as negative samples. Hence the prototype-based contrastive
loss is defined as follows:

Lc =−
N

∑
n=1

K

∑
k=1

log
exp(vn

k · vm
k /τ)

exp(vn
k · vm

k /τ)+∑ j ̸=k ∑i ̸=n exp(vn
k · vi

j/τ)
, (5)

where τ is the temperature hyper-parameter; n is the index of the images.
This proposed module is designed with two main differences from previous self-supervised

approaches. First, our contrastive loss over the prototypes of various organs relies on the
prediction mask rather than the entire image, which is directly related to the objective of the
segmentation task. Second, instead of augmenting the inputs to produce multiple copies, we
perform contrastive learning across multiple images, aiming to capture the semantic repre-
sentation of the same organ that is invariant across different images. Overall, by enforcing
the embeddings of the same organ category to be similar in different images than that of dif-
ferent organ categories, PCEM can enhance the discriminability of the embedding learning.

3.3 Two-Stage Training
The ELSNet is trained in two stages. In the first stage, the exemplar DE and the synthetic
dataset DS are used as training data to train the segmentation network Ns by minimizing the
following joint loss function:

Ls1 = Le +λsLs +λcLc (6)

where λs and λc are trade-off hyperparameters, Lc denotes the prototype-based contrastive
loss defined in Eq.(5), Le and Ls denote the segmentation losses computed from the exemplar
and the synthetic dataset respectively, such that Le = Lseg(Ŷe,Ye) and Ls = Lseg(Ŷs,Ys). The
segmentation loss Lseg is defined as follows:

Lseg(Ŷ ,Y ) = 0.5∗ lce(Ŷ ,Y )+0.5∗ ldice(Ŷ ,Y ), (7)

where lce is the cross-entropy loss function and ldice is the Dice loss function; Ŷ denotes the
predicted output of the segmentation network during the training stage.

After training the segmentation network Ns, we use it to segment each image Iu in the
unlabeled set DU and obtain its predicted segmentation mask Yu as the pseudo-labels, thereby
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constructing a pseudo-labeled set DU = {(It
u,Y

t
u)}T

t=1. Then in the second stage of training,
we train our final segmentation network Ne by using all three sets of images, the exemplar
DE , the synthetic dataset DS and the pseudo-labeled DU by minimizing the following joint
loss function:

Ls2 = Le +λsLs +λcLc +λuLu (8)

where λu is a trade-off hyperparameter, and the segmentation loss on the unlabeled data,
Lu = Lseg(Ŷu,Yu), is incorporated into training with their pseudo-labels. After the two-stage
training, Ne can be used for inference on test images.

4 Experiments

4.1 Experimental Setting
Implementation details. We adopt a U-Shape transformer-based structure [29] as the ba-
sic structure of Ns and Ne in the proposed ELSNet. The weights of the proposed ELSNet
are randomly initialized. The input image size is set to 224×224 with random rotation and
flipping. Adam optimizes the proposed ELSNet with a weight decay of 0.0001 and a learn-
ing rate of 1e-4. The batch size is set to 12 and the value τ is set to 0.07. We divide all
medical 3D volumes into individual images during the testing stage for inference [3, 29].
We randomly select a sample containing all categories in the training set as the exemplar. In
order to reduce the influence of fluctuations in the results, average results over five runs are
reported for each experiment.

Datasets and Evaluation Metrics. We evaluate the proposed framework on the Synapse
dataset1 and the ACDC dataset2. Synapse is a multi-label organ dataset containing 30 ab-
dominal clinical CT cases with 2211 images, and we use 18 cases for training and 12 cases
for testing [3, 29]. ACDC is a cardiac MRI dataset that contains 100 cases from MRI scan-
ners with 1300 images. We used 70 cases for training, 20 for evaluation, and 10 for testing.
Following [9], we evaluated the proposed framework based on two metrics, namely, the Dice
Similarity Coefficient (DSC) and the 95% Hausdorff Distance (HD95).

4.2 Experimental Results
4.2.1 Comparison Results

We compared the ELSNet with three state-of-the-art image segmentation methods under the
same experimental setting on the ACDC and Synapse datasets: UNet [19], MT-UNet [29]
and MLDS [18]. We re-implemented these methods and trained them under the same setting
as the proposed ELSNet. The comparison results on the two datasets are reported in Table 1
and Table 2, respectively. On the ACDC dataset, the proposed ELSNet achieves considerable
improvements, outperforming the second-best method, the semi-supervised MLDS, by 0.221
and 23.39 in terms of the class average DSC and HD95 results, respectively. The Synapse
dataset contains more organ categories with different sizes. The foregrounds and background
are more difficult to distinguish in the images of this dataset. Nevertheless, on the Synapse
dataset, ELSNet again outperforms all three comparison methods and produces the best class

1https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
2https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Table 1: Comparison results on the ACDC dataset. The class average results and the results
for individual classes in terms of DSC and HD95 are reported.

Method DSC.Avg↑ RV Myo LV HD95.Avg↓ RV Myo LV
UNet[19] 0.142 0.140 0.112 0.174 43.30 63.76 35.60 30.80

MT-UNet[29] 0.142 0.119 0.126 0.182 74.20 83.91 61.48 77.22
MLDS[18] 0.189 0.144 0.165 0.258 50.03 72.13 30.20 47.77

ELSNet 0.410 0.293 0.374 0.563 26.64 47.63 16.58 15.73

Table 2: Comparison results on the Synapse dataset. The class average DSC and HD95
results and the DSC results for all individual classes are reported.

Method HD95↓ DSC↑ Aor Gal Kid(L) Kid(R) Liv Pan Spl Sto
UNet[19] 132.42 0.160 0.026 0.167 0.177 0.154 0.649 0.015 0.059 0.033

MTUNet[29] 154.60 0.112 0.066 0.108 0.155 0.053 0.352 0.008 0.046 0.102
MLDS[18] 159.26 0.221 0.057 0.147 0.306 0.183 0.638 0.038 0.306 0.090

ELSNet 109.70 0.315 0.319 0.372 0.381 0.219 0.784 0.067 0.276 0.104

average DSC result of 0.315 and the best class average HD95 result of 109.70. Moreover,
ELSNet achieves the best results in almost all categories except Spl. The improvements are
particularly large in the Aor and Gal categories. Overall, these results validate the efficacy
of the proposed ELSNet for EL.

4.2.2 Qualitative Evaluation

To further validate the segmentation performance of the proposed ELSNet, several visualized
segmentation examples for Baseline, MLDS, and ELSNet are presented in Figure 3. Baseline
refers to the base segmentation network that is directly trained from the single annotated
image. Typically, the tiny sizes of some organs can make segmentation very challenging, not
to mention that there is only one annotation example. However, we can see from Figure 3 that
compared with the existing state-of-the-art method, ELSNet can segment more accurately,
even under conditions of deformation, edge ambiguity, shape complexity and background
clutter shown in the examples.

4.2.3 Ablation Studies

Impact of the proposed modules. We tested the empirical contributions of the proposed
modules on the two datasets and the results are reported in Table 3. Following the general
experimental setup in [18, 22], BS denotes the baseline that uses only the exemplar as su-
pervision, which achieves 0.112 and 0.142 in terms of DSC measure on the two datasets,
Synapse and ACDC, respectively. By adding the proposed exemplar-guided synthesis mod-
ule, “+ESM” substantially improves the performance to 0.234 and 0.273 in terms of DSC
on the two datasets. Such performance gains highlight the impact of the synthetic dataset
produced by ESM, which enriches the diversity of the labeled samples and increases the
generalization capability of the model. By further including the proposed pixel-prototype
based contrastive embedding module in stage 1, the results on the two datasets reach DSC
values of 0.264 and 0.355 respectively. This demonstrates the impact of the PCEM module
on enhancing the discriminative ability of the segmentation model. Finally, the full model,
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Figure 3: Visualized results obtained with the Baseline, the MLDS and the proposed EL-
SNet on Synapse and ACDC datasets. The DSC value of each sample is also presented.

Table 3: Ablation study of the proposed modules on the Synapse and ACDC datasets. BS
denotes the baseline. +ESM denotes the variant that further includes the proposed ESM.
+ESM+PCEM_S1 denotes the variant produced when both ESM and PCEM modules are
used in stage 1. +ESM+PCEM_S1&2 denotes the full approach.

Method
Synapse ACDC

DSC↑ ∆DSC HD95↓ ∆HD95 DSC↑ ∆DSC HD95↓ ∆HD95

BS 0.112 - 154.60 - 0.142 - 74.20 -

+ESM 0.234 +0.122 120.59 -34.01 0.273 +0.131 38.35 -35.85

+ESM+PCEM_S1 0.264 +0.152 101.00 -53.60 0.355 +0.213 40.80 -33.40

+ESM+PCEM_S1&2 0.315 +0.203 109.70 -44.90 0.410 +0.268 26.64 -47.56

"+ESM+PCEM_S1&2", produces the best results on both datasets by using all of the pro-
posed modules in stage 1 and 2. These results validate the impact of the proposed modules
on the overall performance of the proposed ELSNet framework.

Impact of different loss functions. To demonstrate the effectiveness of the loss functions
involved in the training stages of ELSNet, we summarize the ablation results over multiple
loss terms on the left side of Table 4. The results in the second row show that creating the
synthetic dataset with ESM (Ls) can significantly improve the DSC results to 0.273. Using
two modules, ESM (Ls) and PCEM (Le+s

c ), simultaneously to train the model in stage 1 can
lead to further substantial improvements, as shown in the third row. Also, note that ignoring
the synthetic dataset but still using the pseudo-labels of unlabeled data in stage 2 can obtain
a result value of 0.359, which shows the unlabeled data is useful. When the contrastive loss
Lc is only used in either stage 1 or stage 2, the DSC results (in the sixth row and fifth row)
degrade from the full model (the last row) that uses Lc in both stages. The full model with
all the loss terms yields the best results.
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Table 4: Ablation results on the ACDC dataset. Left side presents the ablation results
with different loss functions. Le+s

c indicates that Lc is used in Eq.(6) for stage 1. Le+s+u
c

indicates that Lc is used in Eq.(8) for stage 2. Right side presents the ablation results with
different transformation strategies. Int.E and Int.B indicate intensity transformations are
applied on Exemplar and Background images. Similarly, Geo.E/Geo.B indicates geometry
transformations.

Le Ls Le+s
c Le+s+u

c Lu RV Myo LV DSC.Avg↑ Int.E Int.B Geo.E Geo.B RV Myo LV DSC.Avg↑√
- - - - 0.119 0.126 0.182 0.142 - - - - 0.136 0.159 0.232 0.176√ √

- - - 0.192 0.265 0.362 0.273
√

-
√

- 0.255 0.317 0.362 0.311√ √ √
- - 0.249 0.315 0.503 0.355

√ √
- - 0.191 0.308 0.448 0.315√

-
√ √ √

0.263 0.323 0.488 0.359 - -
√ √

0.210 0.356 0.451 0.339√ √
-

√ √
0.218 0.355 0.462 0.345

√
-

√ √
0.242 0.333 0.464 0.346√ √ √

-
√

0.290 0.354 0.529 0.390
√ √ √

- 0.272 0.334 0.502 0.370√ √ √ √ √
0.293 0.374 0.563 0.410

√ √ √ √
0.293 0.374 0.563 0.410

Impact of the transformation strategies. We tested different transformation strategies for
synthesizing images in ESM by applying Geometric (Geo: scaling, rotation) and Intensity
(Int: blur, intensity variations) transformations on the exemplar and background images. The
results of different variants are summarized and reported on the right side of Table 4. When
none of the transformations is utilized, i.e., we paste the exemplar into different background
images to build the synthetic dataset, minor improvement is achieved over the baseline that
only uses the exemplar, as shown in the first row. When both geometric and intensity trans-
formations are applied to the exemplar, the average DSC performance is substantially im-
proved to 0.311 (second row). By applying the two types of transformations on both the
exemplar and the background images, the performance of the full model improves by an-
other 10% or so to 0.410 (the bottom row). We also observe from the third and fourth rows
that dropping either type of transformations (Geo or Int) can degrade the performance. These
results suggest that both types of transformation are effective for generating useful synthetic
data and the proposed ESM is reasonable. Moreover, dropping the intensity transformation
on the background (fifth row) leads to larger performance degradation than dropping the
geometric transformation on the background (sixth row), which indicates that the intensity
diversity of the background is more important than the geometric diversity.

5 Conclusions

This paper introduced a new experimental scenario, Exemplar Learning, and proposed a
novel framework, ELSNet, to learn segmentation models from only one annotated image.
ELSNet uses an exemplar-guided synthesis module (ESM) to enrich and diversify the train-
ing data by synthesizing annotated samples from the given exemplar, and uses a pixel-
prototype based contrastive embedding module (PCEM) to increase the discriminative ability
of the segmentation model by contrastive embedding learning. A two-stage training process
is deployed to exploit the unlabeled data via pseudo-labels. Experimental results demonstrate
that the proposed framework is effective and outperforms existing segmentation methods un-
der scenarios with very limited supervision information.
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