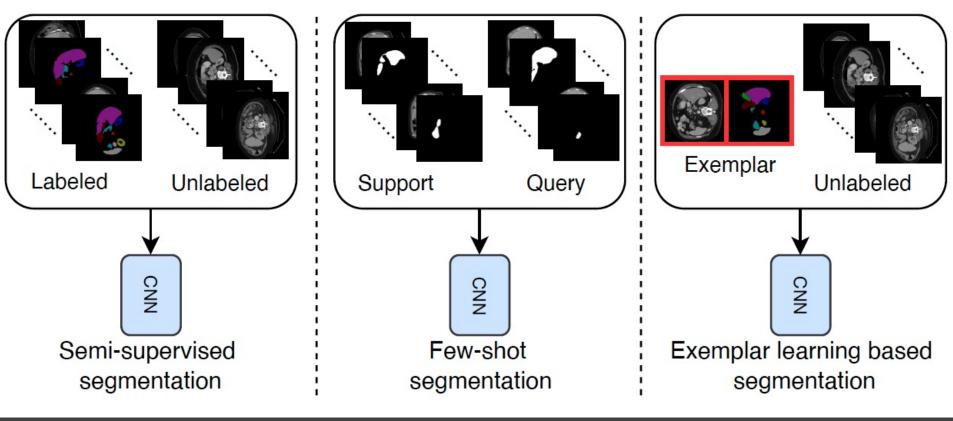
Exemplar Learning for Medical Image Segmentation Qing En¹, Yuhong Guo^{1,2}. ¹Carleton University, ²Canada CIFAR AI Chair, Amii

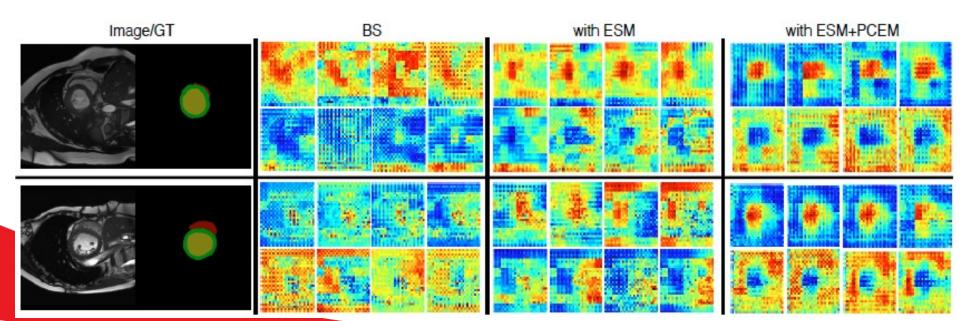
Exemplar Learning

learning scenario, ➢ We propose a novel Exemplar Learning (EL), to explore automated for processes medical image learning segmentation from a single annotated image example

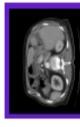


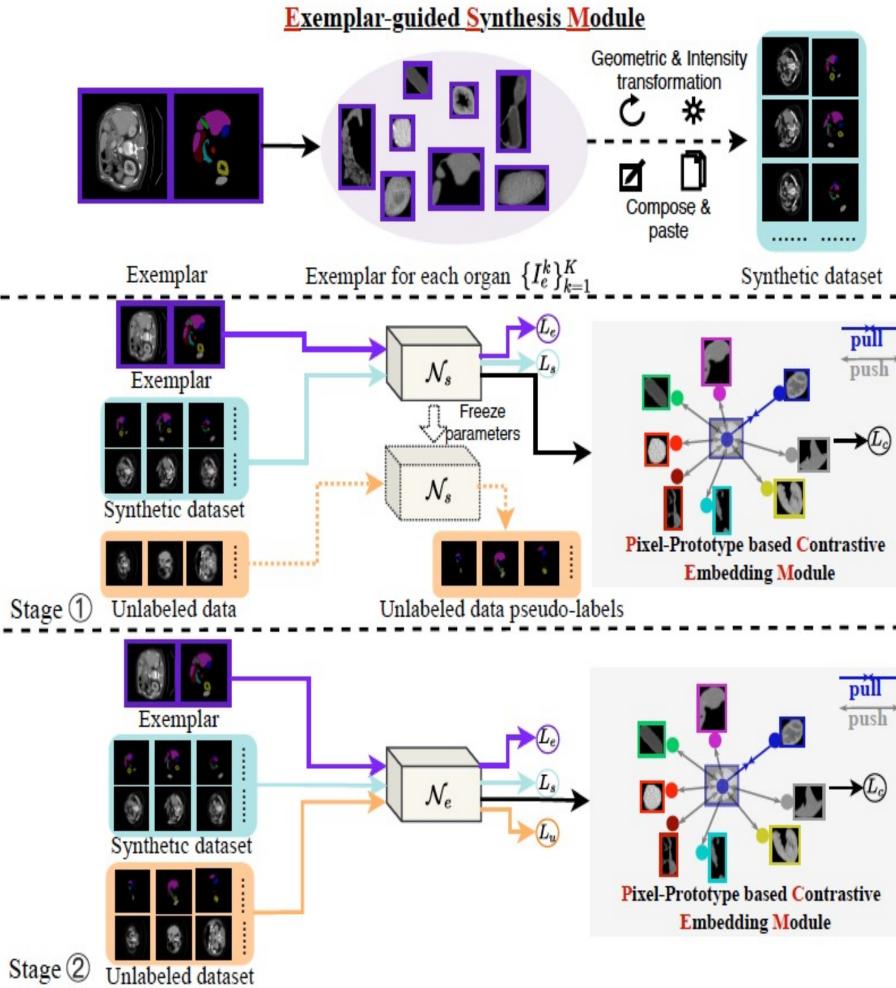
Contribution

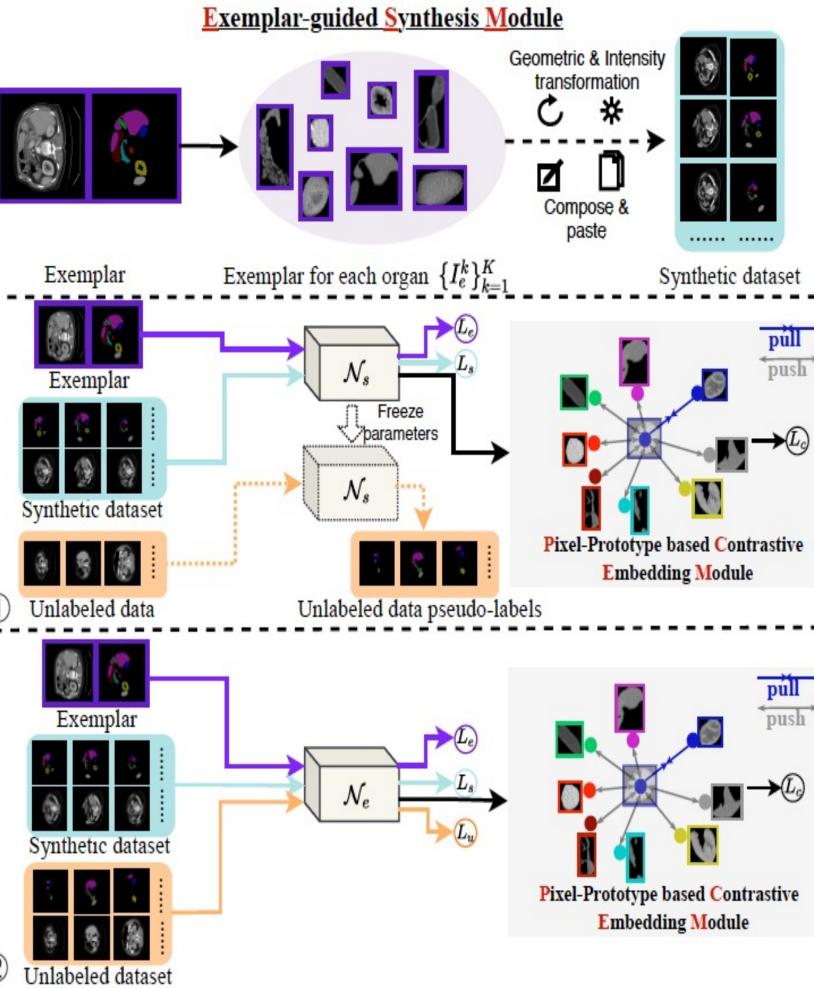
- > We propose a novel learning scenario, Exemplar Learning, which explores medical image segmentation from a single annotated image
- > We propose a novel ELSNet framework to segment medical images in the EL scenario by creating exemplar-based data, learning pixel-prototype based contrastive embedding and exploring unlabeled data with pseudo-labels
- > Experimental results on two medical image segmentation datasets show that the proposed ELSNet can effectively perform the medical semantic segmentation task

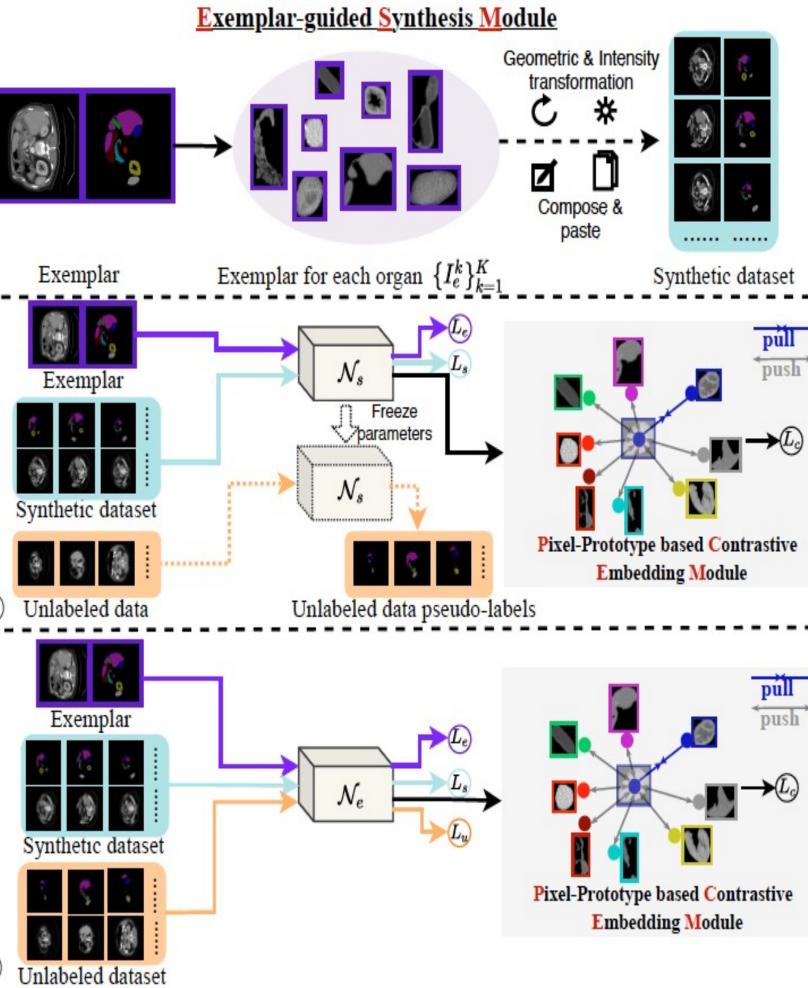


Exemplar Learning-based Synthesis Net









Stage (2)

The Exemplar-guided Synthesis Module (ESM) is proposed to enrich and diversify the training set by synthesizing annotated samples from the given exemplar

The Pixel-prototype based Contrastive Embedding Module (PCEM) is proposed to enhance the discriminative capacity of the base segmentation model via contrastive self-supervised learning

- PCEM

$$L_c = -\sum_{n=1}^N \sum_{k=1}^K \log \frac{1}{ex}$$

- L_e : Exemplar loss
- L_s : Synthetic segmentation loss
- L_c : Prototype contrastive loss
- L_{μ} : unlabeled segmentation loss

$$L_e = \mathcal{L}_{seg}(\hat{Y}_e, Y_e), L_s =$$

$$\mathcal{L}_{seg}(\hat{Y}, Y) = 0.5$$

- segmentation network
- the and PCEM

 $L_{s2} = \lambda_e L_e + \lambda_s L_s + \lambda_c L_c + \lambda_u L_u$

ESM and PCEM

Create the synthetic dataset by ESM $(I_s, Y_s) = \Omega(\mathcal{T}_g(\mathcal{T}_i(I_e)), \mathcal{T}_g(Y_e), \mathcal{T}_g(\mathcal{T}_i(I_b)))$ Train the synthetic segmentation network by

 $v_k = \frac{\sum_{(i,j)} X^{(i,j)} \mathbb{1}[\hat{Y}_x^{(k,i,j)} \neq 0]}{\sum_{i=1}^{k} \hat{Y}_x^{(i,j)}} \neq 0$ $\sum_{(i,j)} \mathbb{1}[\hat{Y}_x^{(k,i,j)} \neq 0]$ $exp(v_k^n \cdot v_k^m / \tau)$ $xp(v_k^n \cdot v_k^m / \tau) + \sum_{j \neq k} \sum_{i \neq n} exp(v_k^n \cdot v_j^i / \tau)$

Generate the pseudo-labels of unlabeled data $D_{U} = \{(I_{u}^{t}, \mathcal{N}_{s}(I_{u}^{t}))\}_{t=1}^{T}$

Two-Stage Training

 $= \mathcal{L}_{seg}(\hat{Y}_s, Y_s) \text{ and } L_u = \mathcal{L}_{seg}(\hat{Y}_u, Y_u)$ $* l_{ce}(\hat{Y}, Y) + 0.5 * l_{dice}(\hat{Y}, Y)$

 \succ The exemplar and the synthetic dataset are used as training data to train the synthetic

 $L_{s1} = L_e + \lambda_s L_s + \lambda_c L_c$

> Make use of the exemplar, synthetic dataset unlabeled dataset to train the exemplar learning segmentation network by

Comparison with the State-of-the-Art Methods

- Datasets: ACDC and Synapse dataset
- Evaluation metrics: the Dice Similarity Coefficient (DSC) and the 95% Hausdorff Distance (HD95)
- Comparison results on the ACDC Dataset

Method	DSC.Avg↑	RV	Myo	LV	HD95.Avg↓	RV	Myo	LV
UNet 🔼	0.142	0.140	0.112	0.174	43.30	63.76	35.60	30.80
MT-UNet[22]	0.142	0.119	0.126	0.182	74.20	83.91	61.48	77.22
MLDS[0.189	0.144	0.165	0.258	50.03	72.13	30.20	47.77
ELSNet	0.410	0.293	0.374	0.563	26.64	47.63	16.58	15.73

Comparison results on the Synapse Dataset

Method	HD95↓	DSC↑	Aor	Gal	Kid(L)	Kid(R)	Liv	Pan	Spl	Sto
UNet[
MTUNet[154.60	0.112	0.066	0.108	0.155	0.053	0.352	0.008	0.046	0.102
MLDS[159.26	0.221	0.057	0.147	0.306	0.183	0.638	0.038	0.306	0.090
ELSNet	109.70	0.315	0.319	0.372	0.381	0.219	0.784	0.067	0.276	0.104

Impact of the proposed modules

Method	Synapse				ACDC				
Method	DSC↑	ΔDSC	HD95↓	$\Delta HD95$	DSC↑	ΔDSC	HD95↓	ΔHD95	
BS	0.112	-	154.60	-	0.142	-	74.20	-	
+ESM	0.234	+0.122	120.59	-34.01	0.273	+0.131	38.35	-35.85	
+ESM+PCEM_S1	0.264	+0.152	101.00	-53.60	0.355	+0.213	40.80	-33.40	
+ESM+PCEM_S1&2	0.315	+0.203	109.70	-44.90	0.410	+0.268	26.64	-47.56	

Qualitative Evaluation

