
7 Appendix
7.1 Experimental Settings

Task Networks Similar to SampleNet [6], we adopt PointNet for classification [7], Point
Cloud Autoencoder (PCAE) for reconstruction [1], and PCRNet for registration [8]. For
the classification and reconstruction tasks, PointNet and PCAE are trained with the same
settings as reported by their original papers. For the registration task, Sarode et al. [8] trained
the PCRNet with the Chamfer distance between template point cloud and registered point
cloud; we follow SampleNet and add a regression loss (besides the Chamfer distance) to
train the PCRNet. These pre-trained networks are treated as the task networks for their
specific applications, whose parameters are fixed during the training of APSNet.

APSNet The feature extract component of APSNet follows the design of PointNet [7]. It
contains a sequence of 1× 1 convolution layers, followed by a symmetric global pooling
layer to generate a global feature vector, which is then used as the initial state of LSTM
for sampling. Each convolution layer includes a batch normalization layer [4] and a ReLU
activation function. A 2-layer LSTM [3] with 128 recurrent units in each layer is used to
generate samples autoregressively.

We consider two variants of APSNet: (1) APSNet, and (2) APSNet-KD, while the former
refers to the supervised training of APSNet and the latter refers to the self-supervised training
of APSNet with knowledge distillation. A trained APSNet generates point cloud QQQ that
isn’t a subset of original input point cloud PPP, but the generated QQQ can be converted to QQQ∗

by a matching process as discussed in Sec. 3.1. Therefore, we further distinguish them as
APSNet-G and APSNet-M, respectively.

SampleNet [6] also generates point cloud QQQ, which is converted to QQQ∗ by the matching
process. Similarly, we denote them as SampleNet-G and SampleNet-M, respectively. In
our experiments, we compare the performances of all these variants. However, we would
like to emphasize that the default SampleNet is SampleNet-M, while the default APSNet
is APSNet-G since APSNet-G yields the best predictive performance without an expensive
matching process as we will demonstrate in the experiments.

Implementation We tune the performance of APSNet based on the hyperparameters pro-
vided by SampleNet [6], and set β = 1, γ = 1 and δ = 0. We use the Adam optimizer [5] with
the batch size of 128 for all the experiments. Learning rate is set to (0.01, 0.001, 0.0005), and
λ of the total loss (9) is set (30, 0.01, 0.01) for classification, registration, and reconstruction
tasks, respectively. Each experiment is trained for 400 epochs with a learning rate decay of
0.7 at every 20 epochs.

Since our code is PyTorch-based, we convert the official TensorFlow code of SampleNet1

to PyTorch for a fair comparison. We found that our PyTorch implementation achieves better
performances than the official TensorFlow version in most of our experiments. For repro-
ducibility, our source code is also provided as a part of the supplementary material. All our
experiments are performed on Nvidia RTX GPUs.

7.2 Reconstruction
The reconstruction task is evaluated with point clouds of 2048 points, sampled from the
ShapeNet Core55 dataset [2]. We choose the four shape classes that have the largest number

1https://github.com/itailang/SampleNet
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Table 1: The normalized reconstruction errors of five sampling methods with different sam-
ple sizes m on the ShapeNet Core55 dataset. M∗ denotes the original results from the Sam-
pleNet paper [6]. The lower, the better.

RS FPS SampleNet APSNet APSNet-KD
m G M M* G M G M
8 21.85 12.79 5.29 5.48 - 4.27 4.59 4.69 4.98

16 13.47 7.25 2.78 2.89 - 2.51 2.62 2.57 2.67
32 8.16 3.84 1.68 1.71 2.32 1.54 1.59 1.47 1.52
64 4.54 2.23 1.32 1.27 1.33 1.07 1.11 1.12 1.14

of examples: Table, Car, Chair, and Airplane. Each class is split to a 85%, 5%, 10% partition
for training, validation and test. The task network, in this case, is the Point Cloud Autoen-
coder (PCAE) for reconstruction [1]. We evaluate the reconstruction performance with the
normalized reconstruction error (NRE):

NRECD(QQQ,PPP) =
CD(PPP,T (QQQ))

CD(PPP,T (PPP))
, (1)

where CD is the Chamfer distance [1] between two point clouds. Apparently, the values of
NRECD are lower bounded by 1, and the smaller, the better.

Table 1 reports the reconstruction results of all the five sampling methods considered.
Similar to the results of classification, (1) SampleNet and APSNet outperform RS and FPS
by a large margin. (2) SampleNet-M relies on the matching process to replace the redundant
samples by FPS to improve its performance over SampleNet-G. (3) In contrast, APSNet-
G outperforms APSNet-M consistently without the extra matching process. (4) APSNet-
KD again achieves a very competitive result to APSNet. (5) Comparing APSNet-G and
SampleNet-M (the best defaults for both algorithms), APSNet outperforms SampleNet con-
sistently by a notable margin.

To investigate why APSNet outperforms SampleNet in the task of reconstruction, we
visualize the sampled points and the reconstructed point clouds of both algorithms in Fig. 1.
As can be seen, SampleNet focuses more on the main body of airplane and samples some
uninformative and symmetric points for reconstruction. In contrast, APSNet focuses more
on the outline of the airplane without losing details, which are critical for the reconstruction.
This observation is more pronounced when sample size is small, such as m = 8. As shown
in Fig. 1(a) and (b), SampleNet fails to sample a point at the tail of the airplane such that
the reconstructed point cloud cannot recover the tail. In comparison, APSNet samples two
important points at the tail and ignores the symmetric one on the other side of the tail, and
therefore is able to reconstruct the tail precisely. One the other hand, SampleNet samples two
symmetric points on the wing, which are likely redundant information for the reconstruction.
Overall, the sampled points from APSNet are more reasonable than those of SampleNet from
human’s perspective,

The effectiveness of different loss components The sampling loss (7) encourages the
sampled points in QQQ to be close to those of PPP and also have a maximal coverage w.r.t. the
original point cloud PPP. We found that this sampling loss provides an important prior knowl-
edge for sampling, and is critical for APSNet to achieve a good performance. In addition,
the sampling loss (7) is more generic than the Chamfer distance since when β = 0, γ = 1 and
δ = 0 it degenerates to the Chamfer distance. The limitation is that we now have more hyper-
parameters to tune. Table 2 reports the ablation study of the sampling loss (7) for APSNet-G
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Figure 1: Visualization of sampled points and reconstructed point clouds by APSNet (1st
row) and SampleNet (2nd row). The red dots are the sampled points; the highlighted yellow
regions in APSNet results are points with high attention scores and the number specify the
order of sampled points. (a) Sampled points when m = 8; (b) Reconstruction when m = 8,
NRE(APSNet)=2.55, NRE(SampleNet)=5.20; (c) Sampled points when m = 16; (d) Recon-
struction when m = 16, NRE(APSNet)=1.57, NRE(SampleNet)=2.34.

on the reconstruction task. It shows that when Lm(QQQ,PPP) and La(PPP,QQQ) enabled (i.e., β = 1
and γ = 1), APSNet-G reaches the best results in almost all settings.

Table 2: Ablation study of the sampling loss (7) for APSNet-G on the reconstruction task. *
denotes the best results when β = 1, γ = 1 and δ = 0.

β = 0 γ = 0 *
8 4.63 4.54 4.27
16 3.07 3.44 2.51
32 1.67 1.49 1.54
64 1.13 1.28 1.07

Inference time comparison We further evaluate the inference times of different sampling
methods in the task of reconstruction. The results are reported in Table 3, where SampleNet-
M and APSNet-G are the main algorithms to be compared since they are the best defaults. It
can be observed that when sample size m increases, the inference times of both SampleNet-M
and APSNet-G increase, while SampleNet-G requires roughly a constant time for sampling.
This is because SampleNet-G leverages an MLP generator to generate all m samples in one
shot; for the problem size considered, one GPU is able to utilize its on-board parallel re-
sources to process different sample sizes in roughly the same time. However, as observed in
the experiments above and also proposed by SampleNet [6], SampletNet relies on the match-
ing process to improve its performance, while matching is the most expensive operation in
SampleNet, leading to a dramatic increase of inference-time for SampleNet-M. By contrast,
due to the autoregressive model of our method, APSNet generates samples sequentially by an
LSTM which results in a linear increase of inference time as m increases. However, APSNet
does not need an expensive matching process for its best performance. Therefore, besides the
improved sample quality, APSNet also outperforms SampleNet in terms of inference time.
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Table 3: Inference time comparison of three sampling methods with different sample size m.
The time is reported in millisecond. ∗ denotes the best default recommended by each paper.

m 32 128 256 512
SampleNet-G 7.63 7.54 7.79 7.94

SampleNet-M∗ 44.33 135.23 261.47 515.30
APSNet-G∗ 9.21 12.84 17.68 27.48
APSNet-M 45.91 139.83 269.40 525.38

7.3 Registration

The task of registration aims to align two point clouds by predicting rigid transformations
(e.g., rotation and translation) between them. To save memory and computation power, the
registration is conducted on the key points that are sampled from the original point clouds.
We follow the work of PCRNet [8] to construct a point cloud registration network (the task
network), and train PCRNet on the point clouds of 1,024 points of the Car category from
ModelNet40. Following the settings in SampleNet, 4,925 pairs of source and template point
clouds are generated for training, where a template is rotated by three random Euler angles
in the range of [−45◦,45◦] to obtain the source. An additional 100 source-template pairs
are generated from the test split for evaluation. The mean rotation error (MRE) between the
predicted rotations and ground-truth rotations is used as the evaluation metric.

Table 4 reports the performances of five sampling methods for registration. Similar to the
results on classification and reconstruction, APSNet outperforms SampleNet consistently by
a notable margin, and achieves the state-of-the-art results in this task. Without leveraging
labeled training data, APSNet-KD again demonstrates an impressive performance that is
close to supervised APSNet.

Table 4: The mean rotation errors of five sampling methods with different sample sizes m on
the ModelNet40 dataset for registration. M∗ denotes the original results from the SampleNet
paper [6]. The lower, the better.

RS FPS SampleNet APSNet APSNet-KD
m G M M* G M G M
8 63.37 31.44 9.72 8.27 10.51 5.47 9.40 5.93 10.51

16 43.89 20.34 12.14 7.45 8.21 4.50 7.18 5.01 7.07
32 27.06 12.97 10.81 6.13 5.94 4.37 5.82 4.56 6.07
64 16.88 7.89 10.93 5.38 5.31 4.42 6.34 4.49 4.97

Visualization of Attention Coefficients For the task of registration, we further visualize
the evolution of attention coefficients during the training process. Specifically, we monitor
the attention coefficients Eq. (3) when generating a point at a specific time step t (the t-th
sample) from a given point cloud of 1024 points. Figure 2 visualizes the evolution of atten-
tion coefficients over 400 training epochs. At beginning of the training, the sampler cannot
decide which point from the point cloud is the most important one to sample, manifested by
the dense cluttered coefficients. As the training proceeds, the attention coefficients become
sparser with peak values on 2-3 points. Further, these attention coefficients are stablized in
the late training epochs and consistently concentrate on a few the same points, demonstrating
the training stability of APSNet.
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Figure 2: Evolution of the attention coefficients of APSNet when generating the t-th sample.
As the training proceeds, the coefficients become sparser with peak values on a few points.
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