LEARNING VISUAL REPRESENTATIONS FOR TRANSFER LEARNING BY SUPPRESSING TEXTURE

PROBLEM ADDRESSED & CONTRIBUTIONS

Suppressing texture improves the transfer learning performance.

- CNN overemphasize on texture at expense of learning shape (high-level information)
- Analysed a few techniques to suppress texture.
- Empirically, Anisotropic Diffusion gave the best results likely due to its edge preserving denoising. Retaining edges is important for downstream tasks.
- We show improved performances across self-supervised learning and supervised learning on various datasets and frameworks.

Normal

OVEREMPHASIS ON TEXTURE

(a) Texture image 81.4% Indian elephant 10.3% indri 8.2% black swan

(b) Content image 71.1% tabby cat 17.3% grey fox 3.3% Siamese cat

(c) Texture-shape cue conflict 63.9% Indian elephant 26.4% indri 9.6% black swan

Gaussian

Images

L'EXTURE SUPPRESSING METHODS

Anisotropic

Normal ImageNe

Cartoon

Shlok Mishra¹, Anshul Shah², Ankan Bansal¹, Janit Anjaria¹, Jonghyun Choi³, Abhinav Shrivastava¹, Abhishek Sharma⁴, David Jacobs¹ ¹UNIVERSITY OF MARYLAND, COLLEGE PARK ²JOHNS HOPKINS UNIVERSITY ³YONSEI UNIVERSITY ⁴AXOGYAN AI

Mothoda	
Methods	

BJECT DETECTION & SEMANTIC SEGMENTATION					
Methods	Dataset	AP_{50}	AP	AP_{75}	mIoU (SS)
Stylized ImageNet Supervised ImageNet		$\begin{array}{c} 43.5\\ 81.6\end{array}$	$28.80 \\ 54.2$	$33.7 \\ 59.8$	- 59.8
MoCo V2	ImageNet	82.4	57.0	63.6	67.5
MoCo V2 Anistropic (Ours)	ImageNet	83.7	58.2	64.8	67.8
Dense-CL	ImageNet	82.8	58.7	65.2	69.4
Dense-CL Anistropic (Ours)	ImageNet	83.5	59.6	66.4	70.5
Dense-CL CC	COCO	81.7	56.7	63.0	67.5
Dense-CL CC Anistropic (Ours)	COCO	83.1	57.9	64.2	68.6

SUPERVISED LEARNING

Method	# Iterations	Top-1 Acc	Top-5 Acc	Object Detection
Baseline Supervised	_	76.13	92.98	70.7
Stylized ImageNet	_	76.72	93.27	75.1
Perona Malik with Pix2Pix	20	76.95	93.36	75.21
Perona Malik	20	76.71	93.26	74.37
Perona Malik	50	76.32	92.96	73.80
Robust AD	20	76.58	92.96	73.33
Robust AD	50	76.64	93.09	73.57
Gaussian Blur	_	76.21	92.64	73.26
Cartoon ImageNet	_	76.22	93.12	72.31
Bilateral ImageNet	_	75.99	92.90	71.34

LEARNING BETTER SHAPE REPRESENTATIONS

Method

ImageNet Baseline Stylized Baseline Anisotropic (Ours)

• We evaluate on Sketch ImageNet to show that we learn better shape representation as compared to the baseline.

Top-1 Acc	Top-5 Acc
13.00	26.24
16.36	31.56
24.49	41.81

ANALYSIS

- predictions.

outline of the objects.

• Our model is less reliant on high-frequency information. • More robust to common corruptions and is more confident in making the right

• On label corruption task we consistently outperform the baseline with a larger improvement upon increasing the corruption probability.

• Anisotropic model has saliency maps that spread over bigger area and include the

• Empirical results suggest that using the proposed data augmentation for pretraining self-supervised models and for training supervised models gives improvements across ten diverse datasets.