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Abstract

Neural Radiance Fields (NeRF) achieves photo-realistic image rendering from novel
views, and the Neural Scene Graphs (NSG) [16] extends it to dynamic scenes (video)
with multiple objects. Nevertheless, computationally heavy ray marching for every im-
age frame becomes a huge burden. In this paper, taking advantage of significant redun-
dancy across adjacent frames in videos, we propose a feature-reusing framework. From
the first try of naively reusing the NSG features, however, we learn that it is crucial
to disentangle object-intrinsic properties consistent across frames from transient ones.
Our proposed method, Consistency-Field-based NSG (CF-NSG), reformulates neural ra-
diance fields to additionally consider consistency fields. With disentangled representa-
tions, CF-NSG takes full advantage of the feature-reusing scheme and performs an ex-
tended degree of scene manipulation in a more controllable manner. We empirically ver-
ify that CF-NSG greatly improves the inference efficiency by using 85% less queries
than NSG without notable degradation in rendering quality. Code will be available at
https://github.com/ldynx/CF-NSG.

Figure 1: Comparison of the qualitative results from NSG [16] and our CF-NSG. CF-
NSG greatly improves the efficiency by using only 15% of the original queries.
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1 Introduction
Being a long standing issue in computer vision, various approaches have been proposed for
the task of novel view synthesis, including those using point clouds, discretized voxel grids
and textured mesh [3, 20, 25]. Neural Radiance Fields (NeRF) [12] represents a static scene
by evaluating a volumetric density (transparency) and a view-dependent color. The object’s
details can be expressed at a low storage cost via an implicit 5D (spatial location (x,y,z) and
viewing direction (θ ,φ )) function implemented with a multi-layer perceptron (MLP).

A similar idea is applied to understand a video scene. Unlike a still image, a video has
an additional temporal-axis, and objects in the scene may be static or dynamic (moving)
across time. Neural Scene Graphs (NSG) for dynamic scenes [16] provides a considerable
potential on various applications by enabling the understanding of a complex scene with
dynamic multi-objects, which has been tricky to model. Also, NSG extends the task of novel
view synthesis to novel scene manipulation, allowing spatial rearrangements of dynamic
objects in the scene (e.g., the second row in Fig. 6). However, direct application of NSG
is still not practical due to heavy computational overhead at inference. Along with other
NeRF variants, NSG also suffers from expensive ray marching for all sampled queries for
rendering. Moreover, since NSG repeats this procedure for each image frame independently,
the total inference cost scales with the spatio-temporal resolution of the video. Observing
this limitation, a natural question arises: how can we efficiently reduce this computational
overhead?

We start from an idea that most objects in a video do not significantly change in adjacent
frames. In other words, there is much redundancy in the representation of the scene across
image frames as visual semantics are largely consistent. Reusing the previously-computed
representations, instead of repeating computations for similar queries again, would be a plau-
sible way to significantly improve efficiency.

We conduct a simple experiment to measure redundancy across frames. We divide an
object’s bounding box into uniform spatial bins and assign queries (x,y,z) to each bin, storing
the estimated color and density values. Fig. 2(a) shows the values across all frames for two
selected bins [A] and [B]. We found that the color and density values from the consecutive
frames hardly or only slightly change within a limited range. Fig. 2(b) shows the ratio of all
bins whose values change less than a threshold ε in two consecutive frames. As the range
of radiance and density are within [0,1], the possible threshold for ε is also within [0,1]. We
note that redundancy is already close to 70% at ε ≈ 0.04. To facilitate better understanding of
ε , we generate images with random salt-and-pepper noise of ε = {0.04,0.18} for all pixels.
As shown in Fig. 2(c), the image with ε = 0.04 noise is almost identical to the original image
maintaining high PSNR. The image with ε = 0.18 noise (90% redundancy in (b)) still well-
preserves the overall scene. This experiment indicates that most of bins share highly similar
values across frames. Hence, actively leveraging this redundancy is not only beneficial but
in fact necessary to guide our model to learn dynamic scenes more efficiently.

To this end, we propose to identify visual components that are consistent across frames,
and reuse them for improved efficiency. Fig. 1 shows the rendered image using our method
with 85% less queries without significantly degrading rendering quality. In this paper, we
propose Consistency-Field-based NSG (CF-NSG), which effectively reduces redundant com-
putation across frames for more efficient rendering. We first review NSG in Sec. 2, and
analyze a critical factor that hinders the feature reusing mechanism in Sec. 3. Then, we in-
troduce our CF-NSG in Sec. 4. We empirically demonstrate that our model greatly improves
efficiency with no distinguishable compromise in image quality in Sec. 5.
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Figure 2: Visualization of large redundancy in NSG [16]. (a), (b): Most of estimated color
and density values are hardly or only slightly change across frames. (c): We add salt-and-
pepper noise of ε to an image proving a majority of bins in (b) preserve similar values.

2 Preliminaries
Neural Radiance Fields (NeRF) [12] captures 3D representations of static objects or scenes.
The implicit representation is encoded into an MLP, which maps a 3D spatial location x =
(x,y,z) to its volumetric density σ , combined with a viewing direction d = (θ ,φ) to an
emitted color c = (r,g,b). The color of the pixel C(r) along a camera ray r is estimated by
accumulating the color and transmittance of N sampled points along the ray:

Ĉ(r) =
N−1

∑
i=0

Ti (1− exp(−σiδi))ci, Ti = exp

(
−

i−1

∑
j=0

σ jδ j

)
(1)

where δi is the distance between adjacent sampled points. The NeRF network is optimized
to reduce the L2 distance between the estimated colors Ĉ(r) for a random a batch of rays R
and their ground truth (GT); that is, L= ∑r∈R ∥C(r)−Ĉ(r)∥2

2.
Neural Scene Graphs (NSG) [16] classifies objects in a multi-object dynamic scene (video)
according to whether they are moving or static across frames. They define the mappings from
global coordinates to each dynamic object’s canonical coordinates using transformations
of the object (e.g., translation, rotation and scaling). They also group dynamic objects into
classes (e.g., car, pedestrian, cyclist), defining a common canonical coordinates of each class.
Meanwhile, all the static objects are grouped as the background. Then, canonical coordinates
of the each class as well as the background are represented using separate NeRFs.

The overall process can be expressed by

Fθbg : (x,d)→ (r,g,b,σ), Fθc : (xo,do,po, lo)→ (r,g,b,σ), (2)

where θbg, θc are respective weights for static and dynamic representation models. Here, c
denotes each class of dynamic objects, where c ∈ {c1, · · · ,cn} for n classes. In the dynamic
model, the set of dynamic objects belonging to class c (Oc) shares weights θc, while latent
vector lo is uniquely learned for an individual object o ∈ Oc. po is the global location of
object o in the scene. Each xo and do refer to the spatial location and the viewing direc-
tion, respectively, where the corresponding color values are desired. Note that xo ∈ [−1,1]3
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Figure 3: Rendering results with naive reusing of NSG. We reproduce a frame seen during
training with a naive reuse of NSG features, resulting in degradation of image quality.

and do are in the canonical coordinates of object o, different from x and d in global coordi-
nates. Outputs (r,g,b,σ) from the dynamic models are mapped from canonical coordinates
to global coordinates and integrated simultaneously with the outputs from the static model
along the rays, composing a scene similarly as in [14].

3 First Try: A Naive Reuse of NSG Features
NSG extends the realm of NeRF-based applications to videos with multiple dynamic objects.
However, computation cost at inference is still prohibitive, as image rendering requires ray
marching operations per frame. Thus, we propose a feature-reusing framework that stores
redundant features across frames during training, then at inference reuses them instead of
going through a full forward pass. Assuming the features in the nearby voxels are similar, we
create quantized memory bins in the coordinates as follows. For the dynamic models (Fθc

in Eq. (2)), we quantize the object-specific 3D coordinates (within the object’s bounding
box) into spatial bins, similarly as in the experiment in Fig. 2. For the static model (Fθbg
in Eq. (2)), following NSG, we define radiance fields and grid memory bins on a set of 2D
planes instead of volume. If a query is assigned to the bin whose value is expected not to
significantly change across frames, we reuse previously computed results from the bin.
A Naive Approach of Reusing NSG features. At the beginning, we use a pretrained NSG
model to compute the color (RGB) and density (σ ) for the training set, caching them in the
memory bins. To estimate the expected change of each bin across frames, we additionally
store the gradients of color and density with respect to global location po, viewing direction
do and d, inputs that may change across frames. A bin with a small gradient indicates that
values in that bin are most likely not to change across frames.Therefore, we examine whether
queries are assigned to the bins whose gradient norm is smaller than a predetermined thresh-
old τ∂ at inference. For such queries, we directly retrieve the stored values from the bins.
Otherwise, the full MLP path is used to compute new RGB and σ . We apply gradient norm
∂ = ∥∂ω/∂po∥2

2+∥∂ω/∂do∥2
2 for the dynamic models, and ∂ = ∥∂ω/∂d∥2

2 for the static model,
where ω ∈ {r,g,b,σ}. Fig. 5(b) presents an overall naive reusing process.

Fig. 3 illustrates the qualitative results. Fig. 3(a) shows an example of a reproduced dy-
namic object, a vehicle. It clearly shows that reusing RGB color values generates abnor-
malities, e.g., blended colors at the rear of the grey car. The naive reusing approach is also
imperfect for reproducing a static background. As seen in Fig. 3(b), the street lamp on the
right or trees in the back (yellow circled) cannot be pinned down, displaying ghost effects.
This indicates the reusing decision was made erroneously, reusing the features that are sig-
nificantly changes across the frames.
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Figure 4: Translation experiment of a dynamic object. In NSG, an object’s color and
shape of tail light change depending on the object’s global location. Meanwhile, CF-NSG
well preserves canonical properties of the object disentangled from environmental factors.

Limitation of the NSG Representations. From the previous example, we notice two inad-
equacies in naive reusing of NSG that may lead to the disappointing results. First, gradient
norm may not provide a convincing criterion for which values in the bins are reusable and
advantageous for the rendering quality. Second, RGB color values may not be appropriate
for direct reuse. As shown in Fig. 2, RGB and σ hardly change in most frames. Then, what
factors do cause these inadequacies? We notice that RGB values change abruptly once in a
while due to external factors such as shadow from nearby environment, global illumination,
or the change of a dynamic object’s location. Considering features that are independent of
these external factors would lead to a more reliable criterion as well as an appropriate reuse.

First, we define two distinct properties that are canonical to the object (e.g., intrinsic
color [27] or shape) and those from external factors. The former should be maintained consis-
tent across frames regardless of the object’s current location or viewing direction, while the
latter may change depending on the spatio-temporal environment. Here, spatio-temporal con-
sistency incorporates both actual time change or movement of an object (temporal change)
and the viewpoint change coming from the use of stereo-cameras on different locations (spa-
tial change). Therefore, we aim to reuse features representing canonical properties.

However, we hypothesize that NSG fails to completely disentangle features intrinsic to
each object and those affected by its transient environment. Since RGB color values are
produced by both object-internal and external factors, supervision from RGB color (GT pixel
values) alone would be unable to instruct about canonical properties of the object. To support
our hypothesis, we conduct an experiment shown in Fig. 4. The first row shows two objects,
a white car (o) and a truck behind it (o′) in the training set, whose bounding boxes po and
po′ are marked in red and white, respectively. In the second row, we render the white car (o)
at intermediate locations between po and po′ , using the NSG representation of the car (lo).
Even though we only change its physical location, we observe that canonical properties of
the object, e.g., its color and shape of the tail lights, are significantly contaminated depending
on its location. This result reveals that the object-intrinsic and environmental representations
are severely entangled in NSG. That is, the object-intrinsic representation learned by NSG is
heavily affected by transient factors, such as the viewing direction or its location.
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4 The Proposed Method: Consistency-Field-based NSG
To improve the efficiency of NSG by the feature-reusing framework while maintaining the
image quality, our observations from Sec. 3 imply two conditions: 1) a solid criterion should
be used to determine which bins are reusable without hurting the rendering quality, and 2)
the reused features should be able to properly represent the characteristics that is intrinsic to
each object. We propose the Consistency-Field-based NSG (CF-NSG), illustrated in Sec. 4.1
and Fig. 5, satisfying these two conditions and achieving disentangled representations. By
the term consistency, we refer to the characteristics of the query that strongly show canonical
and consistent properties of the object across frames. We call our method Consistency-Field
since CF-NSG reformulates the radiance fields to additionally measure the consistency of
each query across frames. We also discuss how we further boost the efficiency and adapt our
final model to practical settings under limited memory in Sec. 4.2.

4.1 Consistency Fields and Reusable Features
Solid Reusability Criterion. We have shown in Sec. 3 that the gradient-norm-based naive
reusing cannot retain the quality of rendered images. Therefore, we take a learnable ap-
proach to enable our model to establish a stronger criterion. Compared to NSG in Fig. 5(a),
our CF-NSG in Fig. 5(c-d) additionally returns consistency scores s ∈ [0,1] estimating how
consistent the query is across frames. We indicate sbg(x) for the static model, and sc(xo) for
the dynamic model of object o belonging to class c, respectively. The queries with higher
consistency scores than a predetermined threshold τ have a strong tendency to be invariant
spatio-temporally, meaning that they are safe to be reused in other frames.

Since there is no ground truth for consistency scores, we give an auxiliary loss at train-
ing as follows: both the full feed-forward pass (black solid line in Fig. 5(c)) and the reuse
pass (red dashed line) are activated, producing ωfull, ωreuse ∈ {(r,g,b,σ) : r,g,b,σ ∈ [0,1]},
respectively. Then, they are aggregated to

ωmixed = s ·ωreuse +(1− s) ·ωfull (3)

A batch of ωmixed are integrated along rays to yield an interpolated image. The color differ-
ence between this interpolated and GT images induces the loss, which is backpropagated to
update s as well as other parameters. At inference, we choose each query’s path based on s,
to reuse (red dashed line in Fig. 5(c)), skip (red solid line, see Sec. 4.2) or full feed-forward.
Reusable Representations. As observed in Sec. 3, the quality of the rendered images de-
teriorates as inappropriate features are reused. To overcome this issue, we explicitly learn a
canonical feature y ∈ Rl , where l is a hyperparameter. ybg indicates that of the static model
and is a function of x. The canonical feature yo of a dynamic object o is a function of its la-
tent vector lo along with xo. These canonical features differ from the intermediate features of
NSG. NSG uses intermediate features to map the positional and directional inputs to higher-
frequency, whereas our canonical features are for well-representing spatio-temporarily con-
sistent properties through the feature-reusing framework. It is these canonical features y
(along with the density σ ) that are stored in the corresponding memory bin at training (blue
dashed line in Fig. 5(c)), contrast to the actual RGB values used in the naive reusing in Sec. 3,
Fig. 5(b). Also, reusing is based on consistency score instead of gradient norm ∂ at inference.
Overall Pipeline. Fig. 5(c-d) illustrate the overall pipeline of our CF-NSG for the dynamic
model. CF-NSG learns consistency score s and canonical features yo simultaneously, and
reuses yo depending on s. If the model reuses improper features largely affected by transient
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Figure 5: The overall pipeline of CF-NSG (the dynamic model). (a)–(d): Instead of com-
puting the whole queries, CF-NSG utilizes feature-reusing frameworks reducing an amount
of full feed-forward pass at inference. (c): CF-NSG learns consistency fields and appropri-
ately reuses features by loss from interpolated outputs (see Eq. 3) and regularizer (see Eq. 4)

factors, L2-loss between the rendered image and GT would increase and imposes a penalty.
Thus, yo with a high s are encouraged to be even more object-intrinsic across frames. The
static model also follows a similar structure, illustrated more in detail in the Supp. Materials.
We also provide pseudocodes for both dynamic and static models in the Supp. Materials.
Training Objective. Our full objective is as follows:

L= ∑
r∈R

[∥∥Ĉ(r)−C(r)
∥∥2

2 +
∥∥Ĉmixed(r)−C(r)

∥∥2
2

]
+ ∑

x,xo∈X

[ 1
∥sbg(x)∥2 +

1
∥sc(xo)∥2

]
+

1
v
∥lo∥2

2, (4)

where we denote the predicted pixel color from a ray r by full feed-forward rendering as
Ĉ, the one by aggregation in Eq. (3) as Ĉmixed, and the reference color as C. The original
training objective of NSG consists of the L2-loss on the rendered image (the first term in
Eq. (4)) and a Gaussian prior on the object latent vector [17] (the last term). To encourage
our model to reason about consistency, we introduce additional regularization to the objective
function. Since we aggregate ωmixed by a convex combination of full feed-forward outputs
and reused outputs, the model might converge to the trivial solution of zero reuse. Thus, we
add a regularization term to penalize low reuse scores for sbg and sc(xo) (the second term).
Where Does Disentanglement Come from? In NSG, where L2-loss between the rendered
and GT images is the only supervision, intermediate features do not need to preserve unique
information about an object or a scene from lo, xo or x, diluted with other inputs quickly. CF-
NSG, on the other hand, is simultaneously trained by an additional task, estimating the con-
sistency score s to predict the proper reusability. Since the model produces both the canonical
features y and s, y is naturally aware of consistent properties of the corresponding bin. For
this reason, while NSG appears to confuse intrinsic vehicle properties and its transient loca-
tion in Fig. 4, CF-NSG is less affected thanks to better disentanglement between them.
Are Environmental Effects Not Considered? We emphasize that CF-NSG does not disre-
gard transient factors and is able to learn environmental properties as well. The second MLP,
a shallow 4-layer MLP, receives transient inputs (global location po, viewing direction do and
d) along with y that well-represents object-intrinsic properties, enabling the second MLP to
learn transient properties more effectively. This process is not skipped regardless of s.
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4.2 Further Improvements

Skipping. We utilize the consistency score s more aggressively to further boost the efficiency.
We find that a bin with a high consistency score s and a low density σ is likely to be an
empty space without a relevant scene content. We skip such a bin and allow queries to be
more densely distributed near the content. NSVF [10] is closely related to our work in that
they improve the efficiency of NeRF by defining a set of voxels in the scene and skipping the
empty voxels. However, the difference arises from the way of finding the empty space. NSVF
prunes the empty voxels based on σ , while our method uses both the s and σ . Relying only
on σ requires a finer adjustment of the threshold between an almost transparent car window
and a truly empty space. On the other hand, they can be distinguished through s; the former
has a lower s, while the latter has a higher s, since the latter has consistently low density over
time. Our method enjoys additional gain in efficiency by skipping more aggressively.
Memory-efficient Implementation. Storing canonical features y ∈ Rl for each spatial bin
imposes a considerable memory footprint, making the framework impractical. That is, we are
faced with two contradicting desiderata: keeping as little information in memory as possible,
while mapping it to a rich feature space. To this end, we apply a learnable factorization in-
spired by [21, 22]. Specifically, y is factorized to flatten(u1×u2)+z, where z∈Rl , ui ∈Rm2

,
and

√
l =m2. Each ui is similarly factorized again by ui = flatten(vi,1×vi,2), where vi, j ∈Rm.

Here, z keeps shared information about each component of the scene (e.g., each dynamic ob-
ject or background) and is shared for all queries belonging to the same component. Since
it is stored only once per each component, we keep z unfactorized to fully enjoy l degree
of freedom. On the other hand, the rest, memory-bin-specific components, are aggressively
factorized to rank-m for efficient memory footprinting. We use l = 256,m = 4. Instead of
storing 256D, we store 4D ×4, thereby reducing the memory usage by 93%.

5 Experiment

Implementation Details. We use KITTI [5] and Objectron [1] datasets that provide 3D
bounding boxes for objects in a scene. KITTI provides multi-object tracking information
captured by stereo-cameras while Objectron contains more diverse types of objects with
more drastic camera view changes. We set baselines including NSG [16], NeRF [12] and
NeRF with temporal inputs [16]. We also compare with NSVF [10] that improved efficiency
of NeRF and D-NeRF [19] that extended NeRF to the dynamic scenes. However, since the
former is mainly targeted to the static scenes and the latter is not considering efficiency, they
are not directly comparable. Nevertheless, we include them as baselines to show a general
tendency. We do not compare with NSFF [9] since the unbounded scene of KITTI induced
an unstable training for depth estimation loss. We refer to Supp. Materials for more details.
Comparison with Baselines. Tab. 1 quantitatively compares the quality of images from
each implicit neural representation framework, with its computational cost indicated by the
number of queries. Impressively, our CF-NSG achieves image quality close to that of NSG
by only using 15–53% of queries. Note that the table is sorted by the number of queries
used by each method, so for the methods below NSG, NSG scores are considered as the
upper bound. When we train vanilla NSG with reduced number of queries (‘NSG-reduced’
in Tab. 1), we observe significant performance drop. Fig. 6 compares our method to baselines
qualitatively. The first row compares our CF-NSG against baselines on reproduction of a
frame seen during training, and the second row compares NSG and CF-NSG on novel scene
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Dataset Method #Queries PSNR(↑) SSIM [23](↑) LPIPS [28](↓) tOF [2]×106(↓) tLP [2]×100(↓)

KITTI

D-NeRF [19] 8.72× 16.33 0.505 0.418 3.823 4.835
NeRF [12] 7.90× 20.99 0.621 0.446 2.702 3.840
NSVF [10] 6.38× 22.95 0.706 0.386 2.831 5.071
NeRF+time [16] 1.64× 24.86 0.653 0.492 2.272 1.563

NSG [16] 1× 29.54 0.914 0.171 0.619 0.265

NSG-reduced [16] 0.75× 24.69 0.702 0.452 1.625 1.990
CF-NSG (ours) 0.15× 28.70 0.891 0.204 0.766 0.266

Objectron
chair

NSG [16] 1× 29.20 0.864 0.286 0.224 0.411

NSG-reduced [16] 0.29× 27.65 0.866 0.263 0.245 0.296
CF-NSG (ours) 0.28× 28.58 0.878 0.259 0.229 0.354

Objectron
camera

NSG [16] 1× 29.17 0.854 0.273 0.414 0.673

NSG-reduced [16] 0.85× 22.82 0.701 0.454 1.182 1.383
CF-NSG (ours) 0.53× 26.01 0.789 0.363 0.471 0.634

Table 1: Quantitative Comparison on KITTI [5] and Objectron [1]. CF-NSG achieves
comparable results with NSG and outperforms other baselines. Methods above NSG use
more queries than NSG, while those below NSG use less (thus, NSG is an upper-bound).

Figure 6: Qualitative comparisons on KITTI [5]. We compare NSG [16], NSVF [20], D-
NeRF [19] and CF-NSG. We note that CF-NSG uses 80–85% fewer number of queries.

manipulation, where we sample dynamic objects in the reference frame and generate a scene
in a new arrangement. We can see that the rendered images of NSG and ours are almost
indistinguishable from human eyes in spite of significantly less number of (15–20%) quires.

We also show that our method indeed learns disentangled representations regarding con-
sistency. We conduct a similar experiment as in Sec. 3 for CF-NSG, and show the result
in the third row of Fig. 4. Our CF-NSG relatively well preserves object-intrinsic properties
regardless of the object’s location. Making use of disentangled representations, we also can
apply CF-NSG to various scene compositions in a more stable manner (see Supp. Material).
Ablation Study. In Tab. 2, we show the benefit of using score-based skipping and feature-
reusing framework progressively. After skipping, 62.7% of queries are left, while 75.8% of
them take the reusing pass. We also show our choice of 100 bins per dimension balances
the trade-off between the rendered image quality and the memory cost. More ablations on
various skipping and memory-efficient implementations are in Supp. Materials.
Trade-off between Computation and Memory Cost. Since our approach stores and reuses
consistent components, our efficiency gain is accompanied by additional memory footprint.
Tab. 3 represents the rendering quality and additional memory cost as a function of com-
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Method #Queries PSNR(↑)

NSG[16] 1 29.54
+ Score-based skipping 0.627 28.80
+ Feature-Reusing (CF-NSG) 0.152 28.70

#Bins per dim. PSNR(↑) Mem.(MB)

75 28.59 165.73
100 28.70 313.83
125 28.72 503.12

Table 2: Ablations for each component and bin size. We validate score-based skipping and
feature-reusing frameworks respectively and evaluate effect of bin size.

#Queries 0.15× 0.30× 0.45× 0.60× 0.90× 1× NSG(1×)
FLOPs/frame 8.78×1011 1.66×1012 2.30×1012 2.95×1012 4.50×1012 5.00×1012 5.12×1012

Mem.(MB) 313.8 249.9 184.3 131.92 119.76 0 0
PSNR(↑) 28.70 28.73 28.78 28.78 28.78 28.88 29.54

Table 3: Trade-off between speed and additional memory usage with CF-NSG. We reveal
relation between additional memory cost and number of queries for full feed-forward pass.

putation cost in the number of queries and FLOPs. We observe a relatively small memory
footprint of 300MB leads to large efficiency gains by up to 85% less queries for forward
pass, with little drop in the image quality. (The actual speed improvement in FLOPs is about
82.9%, slightly less than 85%, since reusing is still not completely free.) In practice, a user
may flexibly choose a proper reusing rate considering the resource budget.

6 Related Work
Recently, the advancement of implicit or neural representations has enabled researchers
to achieve photo-realistic views [7, 11, 15]. To suggest a better representation for over-
smoothed renderings of the existing methods, Mildenhall et al. [12] introduced Neural Ra-
diance Fields (NeRF). However, training and rendering processes based on neural represen-
tations often require time-consuming ray marching. To improve efficiency of NeRF-based
models, some research has introduced more efficient data structures e.g., caching [4, 6, 13],
visual hull [8], sparse voxel [10], view-dependenet multiplane image [24] and octree [26].

Another stream of research introduced representations of complex and dynamic scenes [9,
18, 19]. To clarify the difference between static and dynamic scene representations, the lat-
ter involves movement in both the camera and the scene. Hence, it is important to consider
interactions with the scene such as global illumination to determine the appearance of a dy-
namic object. Due to this difference, more factors need to be considered to efficiently render
the dynamic scenes besides simply modeling each canonical space of dynamic object as an
efficient radiance fields for static scenes i.e., directly applying [4, 6, 8, 10, 13, 24, 26].

7 Summary
We propose CF-NSG, a novel framework for representing multi-object dynamic scenes effi-
ciently by utilizing a feature-reusing framework based on consistency-fields. CF-NSG is able
to render images using only 15% of the original number of queries with little compromise
to the image quality. Also CF-NSG enjoys more extended novel scene manipulation, taking
advantage of disentangled representation with respect to spatio-temporal consistency.
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