
SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS i

Supplementary Material for
Towards Efficient Neural Scene Graphs by
Learning Consistency Fields

A Illustration of the Static Model

Fig. i illustrates the overall pipeline for the static model of our CF-NSG. The static model
receives 3D location x and viewing direction d in global coordinates as input and returns
RGB and density values of the queries belonging to the static objects. The canonical features
ybg are dependent on x and represent object-intrinsic properties. ybg and density σ are stored
in the memory bins during training and reused, while at inference queries are skipped, reused,
or fully feed-forwarded based on the consistency scores sbg as same as the dynamic model.

Figure i: The overall pipeline of CF-NSG (the static model).

B Pseudocode

We provide a pseudocode for our CF-NSG in Alg. 1 (dynamic model) and in Alg. 2 (static
model). Note that o ∈ Oc denotes each dynamic object belonging to a class c ∈ C. Every
query goes through either Alg. 1 or Alg. 2 based on whether it belongs to a dynamic object
or the static background. Then, RGB and density values of the query are returned except
when the query is likely to be in the empty-spaced bin and therefore skipped. After this step,
the RGB and density values of all queries in each batch are integrated along the ray as in the
original NeRF [5].

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

ii SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS

Algorithm 1: Dynamic model of CF-NSG
Input: 3D location xo, viewing direction do, latent vector lo, global location po of

dynamic object o belonging to class c, the first 8-layers MLPs Fc,1, the
second 4-layers MLPs Fc,2 of the dynamic model for class c, bin memory
Mo of the object o, hyperparameters τ and τσ

1 [Training]
// Going through the full forward pass

2 yo,full← Fc,1(xo, lo)
3 (r,g,b,σ ,so)full← Fc,2(yo,full,do,po)

4 Update(Mo,xo,(yo,σ ,so)full)
// Going through the reusing pass

5 if DoesMemoryExist(Mo,xo) then
6 (yo,σ ,so)reuse← Retrieve(Mo,xo)
7 (r,g,b)reuse← Fc,2(yo,reuse,do,po)

8 (r,g,b,σ)interpolate← so,full · (r,g,b,σ)reuse +(1− so,full) · (r,g,b,σ)full

9 else
10 return

Output: (r,g,b,σ)interpolate
11 [Inference]
12 if DoesMemoryExist(Mo,xo) then
13 (yo,σ ,so)← Retrieve(Mo,xo)

// Skipping the whole pass

14 if so > τ and σ < τσ then
15 return

// Activate the reusing pass

16 else if so > τ and σ ≥ τσ then
17 (r,g,b)← Fc,2(yo,do,po)

// Activate the full forward pass

18 else
19 (yo,σ ,so)← Fc,1(xo, lo)
20 (r,g,b)← Fc,2(yo,do,po)

21 else
22 (yo,σ ,so)← Fc,1(xo, lo)
23 (r,g,b)← Fc,2(yo,do,po)

Output: (r,g,b,σ)

SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS iii

Algorithm 2: Static model of CF-NSG
Input: 3D location x, viewing direction d, the first 8-layers MLPs Fbg,1, the second

4-layers MLPs Fbg,2 of static model, bin memoryMbg for the static model,
hyperparameters τ and τσ

1 [Training]
// Going through the full forward pass

2 yfull← Fbg,1(x)
3 (r,g,b,σ ,s)full← Fbg,2(yfull,d)
4 Update(Mbg,x,(y,σ ,s)full)
// Going through the reusing pass

5 if DoesMemoryExist(Mbg,x) then
6 (y,σ ,s)reuse← Retrieve(Mbg,x)
7 (r,g,b)reuse← Fbg,2(yreuse,d)
8 (r,g,b,σ)interpolate← sfull · (r,g,b,σ)reuse +(1− sfull) · (r,g,b,σ)full

9 else
10 return

Output: (r,g,b,σ)interpolate
11 [Inference]
12 if DoesMemoryExist(Mbg,x) then
13 (y,σ ,s)← Retrieve(Mbg,x)

// Skipping the whole pass

14 if s > τ and σ < τσ then
15 return

// Activate the reusing pass

16 else if s > τ and σ ≥ τσ then
17 (r,g,b)← Fbg,2(y,d)

// Activate the full forward pass

18 else
19 (y,σ ,s)← Fbg,1(x)
20 (r,g,b)← Fbg,2(y,d)

21 else
22 (y,σ ,s)← Fbg,1(x)
23 (r,g,b)← Fbg,2(y,d)

Output: (r,g,b,σ)

iv SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS

C Implementation Details
As we want our model to learn consistency based on the understanding of color and volumet-
ric density of the scene, we warm up CF-NSG using only NSG loss terms (the first and last
term in Eq. (4)) and afterwards train CF-NSG with Eq. (4). For KITTI [3], we pretrain CF-
NSG for 275k iterations and finetune for 75k iterations, while for Objectron [1] we use 500k
and 235k iterations, respectively. We use a single Nvidia TITIAN Xp GPU for training and
find the setting with the number of bins for each coordinate axis N = 100, score threshold
τ = 0.5, density threshold τσ = 0.9, l = 256 (m = 4) and coefficient of score regularization
term λ = 10−8 work well for our experiments.

Empirically, we find that for the static model for KITTI, storing color directly to the
bins instead of canonical features does not harm the image quality. Thanks to the learnable
score, changeable parts of the background are well captured and return low scores, therefore
rendered from the full forward pass. Instead of storing l-dimensional canonical features,
using 3-dimensional RGB enhances the efficiency in terms of memory cost.

Backgrounds of the Objectron dataset are mostly composed of floors and walls that are
spatially close to the object; that is, the backgrounds tend to include both vertical and hori-
zontal planes of the object. Therefore, modeling the background with parallel 2D planes [10],
following NSG, leads to an inappropriate fitting. As shown in Fig. iv, NSG results in a
blurred background. When we finetune our CF-NSG after pretraining NSG loss, the static
model cannot learn consistency scores and canonical features stably because incorrect RGB
color estimation produces rendered images that cannot give an accurate instruction about
consistency. Thus, we do not use a feature-reusing framework for the static model and con-
centrate on the dynamic model for a comparison on Objectron. We also report the number
of queries that belong to the object in Tab. 1 in the main manuscript.

Across all the experiments, we use the official implementation of NSG [6] for NSG and
our CF-NSG: we define 6 planes for the static model and calculate the intersections of each
plane and each ray, instead of performing ray marching. For the dynamic model, we use 7
sampling points on each ray which intersects with the bounding box of each of the dynamic
objects. Following the above settings, we sample 13 points in total on each ray and do not
use an additional fine network for NeRF+time [6] in Tab. 1 (in the main manuscript). For
NeRF [5] and NSVF [4], on the other hand, we use their official implementation and utilize
both coarse and fine network using 64 and 128 sampling points per ray, respectively. For
‘NSG-reduced’ on both KITTI and Objectron, we reduce the number of queries until objects
in a rendered image are severely damaged and indistinguishable from the background.

The optimization of NSG, NeRF, and NeRF+time takes 350k iterations for KITTI and
735k iterations for Objectron, respectively, while that of D-NeRF [7] and NSVF takes 800k
and 150k iterations for KITTI, respectively. We set initial voxel size as 0.5 for NSVF to fit
in our budget.

D Additional Results of CF-NSG
Making use of disentanglement between object-intrinsic and environmental representation,
we apply CF-NSG to various scene compositions more stably. In Fig. ii, we apply rotations
on a dynamic object over a range of unfamiliar angles at which the appearance of the object
is not entirely new but appear rarely in the training set. NSG properly represents the object
for the frequently appeared views at training. For views beyond a certain range, however,

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Ahmadyan, Zhang, Ablavatski, Wei, and Grundmann} 2021

Citation
Citation
{Zhou, Tucker, Flynn, Fyffe, and Snavely} 2018

Citation
Citation
{Ost, Mannan, Thuerey, Knodt, and Heide} 2021

Citation
Citation
{Ost, Mannan, Thuerey, Knodt, and Heide} 2021

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Liu, Gu, Lin, Chua, and Theobalt} 2020

Citation
Citation
{Pumarola, Corona, Pons-Moll, and Moreno-Noguer} 2021

SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS v

NSG produces significantly irrelevant colors (see the left two images in the lower row of
Fig. ii), probably due to its entangled representations. On the other hand, CF-NSG fully
understands the consistent properties (i.e., vehicle color), and therefore represents objects
with significantly less deterioration.

Figure ii: Results on novel pose synthesis (rotation).

However, we show that there is still room for improvement in representing scenes, includ-
ing fast movement and deformable objects. Since CF-NSG considers consistent properties of
the objects in the scene, too rapid change in shape or location may present elusiveness. For
instance, Fig. iii represents CF-NSG’s confusion when a pedestrian’s pose changes largely.
As a future work, it will be interesting to see if some prior knowledge about the object or
finer adjustments to the consistency score helps to expand the spectrum of applicable scenes.

Figure iii: A failure case of CF-NSG with elusiveness.

Nevertheless, our CF-NSG can be applied to various scenes in KITTI [3] and Objec-
tron [1] including diverse objects and drastic camera view changes. We provide additional
qualitative results for our CF-NSG in Fig. iv–vii. Fig. iv and v show the results of recon-
structing the reference frame seen during the training. CF-NSG can be applied to various
scenes with diverse objects, showing minimal degradation of image quality or in some cases
(e.g., chair in Fig. iv) even being better at capturing the fine details of the object than NSG
such as patterns on the seat cushion of the chair in spite of using only 15–53% of queries.
In Fig. vi and vii, using dynamic objects in the reference frame, we manipulate a scene
in a novel arrangement, e.g., translating the objects horizontally or rotating the objects on
their global position. Thanks to disentanglement between object-intrinsic and environmental
representations, CF-NSG performs an extended degree of scene manipulation more stably
without abnormalities in vehicle color or shape.

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Ahmadyan, Zhang, Ablavatski, Wei, and Grundmann} 2021

vi SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS

Figure iv: Qualitative results on Objectron [1] reconstructing the reference frame. CF-
NSG uses only 28–53% queries NSG uses to render an image.

Figure v: Qualitative results on KITTI [3] reconstructing the reference frame. CF-NSG
uses only 15–20% queries NSG uses to render an image.

Citation
Citation
{Ahmadyan, Zhang, Ablavatski, Wei, and Grundmann} 2021

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS vii

Figure vi: Qualitative results on KITTI [3] translating the objects.

Figure vii: Qualitative results on KITTI [3] rotating the objects.

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

viii SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS

E Additional Ablations
In this section, we conduct additional ablation studies to verify: 1) our score-based skipping
compared to density-only-based skipping, and 2) our memory-efficient implementation to
see if it is effective in terms of both memory cost and preservation of image quality.
Score-based Skipping. In Fig. viii, we reconstruct the reference scene in the training set
using both the consistency score and density (b), or using the density only (c). Without the
score, inappropriate skipping leaves black marks where the car windows should appear (yel-
low rectangle in the center in Fig. viii(c)). Since almost transparent windows have density
values close to zero, using density alone leads to indistinctiveness between windows and the
empty space. Therefore, most of the car windows are skipped erroneously. Also, the queries
belonging to the shadow on the road are improperly skipped (yellow rectangle on the right
corner in Fig. viii(c)). On the other hand, considering the consistency scores along with
the density results in appropriate skipping with a minimal degradation in image quality, as
shown in Fig. viii(b).

Figure viii: Ablations for Skipping with and without Score.

Memory-efficient Implementation. In Tab. i, we report the memory usage and render-
ing quality metrics with the following three approaches: 1) implementation without any
memory-efficient methods, 2) encoder-decoder architecture, and 3) low-rank factorization
(used in our CF-NSG). For the encoder-decoder architecture, we feed y ∈ Rl to the encoder
and store the output yintermediate ∈ Rn, where n = l/4. Then, we feed yintermediate to the de-
coder and reuse the output yout ∈Rl from the decoder. We use 1-layer MLP for both encoder
and decoder, while adding ReLU activation only for the encoder. Tab. i shows that low-rank
factorization is beneficial to both efficiency and image quality.

Method Mem.(MB) PSNR(↑) SSIM [8](↑) LPIPS [9](↓) tOF [2]×106(↓) tLP [2]×100(↓)

Without any 5665.51 27.73 0.860 0.128 0.936 0.445
Enc-Dec 503.12 19.00 0.782 0.195 2.789 7.016
Low-rank 313.83 28.70 0.891 0.204 0.766 0.266

Table i: Ablation for memory-efficient implementation.

Citation
Citation
{Wang, Simoncelli, and Bovik} 2003

Citation
Citation
{Zhang, Isola, Efros, Shechtman, and Wang} 2018

Citation
Citation
{Chu, Xie, Mayer, Leal-Taix{é}, and Thuerey} 2020

Citation
Citation
{Chu, Xie, Mayer, Leal-Taix{é}, and Thuerey} 2020

SONG ET AL: TOWARDS EFFICIENT NSG BY LEARNING CONSISTENCY FIELDS ix

References
[1] Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jianing Wei, and Matthias

Grundmann. Objectron: A large scale dataset of object-centric videos in the wild with
pose annotations. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7822–7831, 2021.

[2] Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé, and Nils Thuerey. Learning
temporal coherence via self-supervision for GAN-based video generation. ACM Trans-
actions on Graphics (TOG), 39(4):75–1, 2020.

[3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driv-
ing? the KITTI vision benchmark suite. In IEEE conference on computer vision and
pattern recognition, pages 3354–3361. IEEE, 2012.

[4] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural
sparse voxel fields. arXiv preprint arXiv:2007.11571, 2020.

[5] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. NeRF: Representing scenes as neural radiance fields for view
synthesis. In European conference on computer vision, pages 405–421. Springer, 2020.

[6] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene
graphs for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2856–2865, 2021.

[7] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-
NeRF: Neural radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10318–10327, 2021.

[8] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity
for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals,
Systems & Computers, 2003, volume 2, pages 1398–1402. IEEE, 2003.

[9] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 586–595,
2018.

[10] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo
magnification: Learning view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817, 2018.

