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Abstract

We present PanoHDR-NeRF, a neural representation of the full HDR radiance field of
an indoor scene, and a pipeline to capture it casually, without elaborate setups or complex
capture protocols. First, a user captures a low dynamic range (LDR) omnidirectional
video of the scene by freely waving an off-the-shelf camera around the scene. Then, an
LDR2HDR network uplifts the captured LDR frames to HDR, which are used to train
a tailored NeRF++ model. The resulting PanoHDR-NeRF can render full HDR images
from any location of the scene. Through experiments on a novel test dataset of real scenes
with the ground truth HDR radiance captured at locations not seen during training, we
show that PanoHDR-NeRF predicts plausible HDR radiance from any scene point. We
also show that the predicted radiance can synthesize correct lighting effects, enabling the
augmentation of indoor scenes with synthetic objects that are lit correctly. Datasets and
code are available at https://lvsn.github.io/PanoHDR-NeRF/.

1 Introduction
Capturing the incoming radiance of a given scene is an important step for many augmented
reality applications, since it allows immersive exploration and realistic scene augmentation. To
accurately measure the radiance, Debevec [7] pioneered image-based lighting which involves
photographing a chrome sphere—called a light probe—at different exposures and merging
them into a single, high dynamic range (HDR) image [8]. HDR light probing was later
extended to use wide angle lenses or 360◦ cameras and is at the heart of the lighting capture
necessary to achieve special effects in movies today1. Because of the close proximity between
light sources and objects in the scene, the HDR radiance field of a typical indoor scene varies
rapidly: lighting near a window is vastly different from the center of the room. Accurately
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a) Casual capture b) Novel view synthesis c) HDR radiance estimation

OursNeRF++

Figure 1: We capture the continuous HDR radiance of an indoor scene. Our PanoHDR-NeRF
approach takes a) casually captured LDR images from an off-the-shelf camera (shown in
inset) as input, and performs b) novel view synthesis of the indoor scene. c) As opposed to
existing techniques such as NeRF++ [58] (left), PanoHDR-NeRF (right) properly estimates
the HDR radiance of the scene, visualized by relighting virtual test objects.

capturing indoor radiance involves moving the apparatus and repeating the operation many
times, limiting scalability. Approximations such as reprojecting the measured radiance onto
a proxy 3D model [9] must be used. To simplify the capture process, one could use inverse
tonemapping techniques [10, 39, 47] which estimate the true dynamic range information from
low dynamic range (LDR) inputs. This yields radiance estimates only where images are taken.
Can we capture and learn a representation of the scene from which HDR radiance can be
synthesized at any point?

Novel view synthesis of an object or scene from multiple views has garnered attention
recently, especially since the emergence of neural radiance fields (NeRF) [34]. In this
approach, a set of images are captured, co-registered using structure-from-motion (SfM),
and used to train a deep network that learns to predict the color and opacity along any 3D
ray using volumetric rendering. Recent flavors of NeRF model large scenes [3, 58], handle
omnidirectional input images [15], and decompose the scene into intrinsic components [5, 59].
Most NeRF-based methods accept LDR images as input and do not accurately model the true
HDR radiance of indoor environments. There are recent attempts to address this limitation [22,
35], which require multiple LDR images at different exposures to model the full dynamic
range of indoor lighting. Capturing 11 exposures at a point of the scene, which is necessary to
reconstruct a reasonable HDR panorama spanning over 22 f-stops, takes approximately two
minutes with a conventional 360◦ camera (Ricoh Theta Z1). Thus to capture HDR lighting
for a large indoor scene, we need over 200 images bringing the capture time to over 3.5 hours.
In addition, an elaborate setup would be required to avoid ghosting artifacts. These methods
to capture the full dynamic range of lighting for large indoor scenes require specialized setup
and are tedious and cumbersome.

In this paper, we present PanoHDR-NeRF, a neural representation of the plausible full
HDR radiance field of an indoor scene. We also present a method to generate it from casually
captured images of the scene. HDR radiance from any novel viewpoint in the scene can
subsequently be estimated (fig. 1) from PanoHDR-NeRF. Our method does not require any
special equipment or complicated capture protocols. It accepts as input a video sequence
captured by freely moving a commercial 360◦ camera around the scene. As output, it can
produce the HDR radiance at any given location in the scene. To do so, we leverage two deep
neural networks: 1) an LDR2HDR model that predicts the HDR radiance from a single LDR
panorama captured by the camera and 2) a modified NeRF++ model trained on the predicted
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HDR outputs of the first network. To evaluate our proposed method, we capture a set of six
different indoor scenes, which we augment with a set of ground truth HDR light probes at
each scene. Our experiments demonstrate that, despite the simplicity of the capture procedure,
PanoHDR-NeRF can accurately predict HDR radiance in a variety of challenging conditions.
Our approach can render 360◦ spatially varying HDR light probes, which can be used to
provide correct lighting effects when the scene is augmented with virtual objects. Compared
to previous methods, our approach reduces the complexity and time required to capture the
full HDR radiance field of the scene.

2 Related work
Inverse tonemapping Inverse tonemapping aims to recover missing information in the
over- and under-saturated areas of an LDR image. While earlier methods [39] relied on
heuristics, several deep learning architectures have been proposed recently [10, 57]. These
include a 2D encoder and 3D decoder with skip connections to generate bracketed LDR image
stacks (over exposed and under exposed) [10], an encoder-decoder to reconstruct the HDR
image directly [25], and a multiscale autoencoder architecture to learn multilevel features
from LDR image which are merged to reconstruct HDR images [30]. Lee et al. [24] generate
LDR stacks with a two-branch network. DeepHDR [42] mask out the saturated areas to
reduce sub-optimal features from well-exposed and saturated pixels. HallucinationNet [27]
individually models the main components of the imaging pipeline: dynamic range clipping,
camera response function, and quantization. LANet [55] introduces a multi-task network with
a luminance attention and HDR reconstruction streams. We build on the LANet architecture
and augment it with an additional rendering loss. This combination outperforms alternatives
at predicting the high dynamic range radiance in indoor environments.
Novel view synthesis Classical methods reconstruct an explicit 3D model of the scene [9,
14, 18]. Recent works utilize off-the-shelf SfM techniques to generate a coarse geometry
and use neural networks to render photorealistic novel views [19, 32, 48]. Breaking the
scene into Multi-Plane Image (MPI) representation to render novel views by blending has
been tried [11, 33, 60]. DeepVoxels [44] learn a voxel-based volumetric representation of
the scene using Gated Recurrent Units (GRUs) [6]. Free View Synthesis and Stable View
Synthesis [40, 41] map the encoded features from the source images into the target view
and blend them via a neural network directly or in a geometric space. Novel view synthesis
from omnidirectional images are fairly limited so far. Huang et al. [21] reconstruct a point
cloud from 360◦ videos to achieve real time video playback on a VR device. Serrano et
al. [43] design a layered scene representation that facilitates parallax and real time playback
of 360◦ video. [1, 26] present Multi-Depth Panorama (MDP) and multi-sphere images to
create 6-DoF renderings. This requires an elaborate setup and does not accommodate free
viewpoint synthesis. Bertel et al. [4] propose a fast, casual and robust capture of immersive
real-world VR experience. However it takes a lot of memory and poor proxy geometry causes
warping artifacts. Xu et al. [52] estimate the entire indoor scene from a single image using a
CNN but need room layout priors and depth that are challenging to obtain for real scenes.
Neural radiance fields Neural Radiance Fields (NeRF) [34] learn an implicit volumetric
scene representation with a Multi-Layer Perceptron (MLP) that receives viewing positions
and directions as input and predicts the RGB colour and opacity as output. The original
formulation was later extended in several ways relevant to our work. NeRF++ [58], which we
leverage, models an unbounded scene by splitting it into foreground/background, learning

Citation
Citation
{Rempel, Trentacoste, Seetzen, Young, Heidrich, Whitehead, and Ward} 2007

Citation
Citation
{Endo, Kanamori, and Mitani} 2017

Citation
Citation
{Zhang and Lalonde} 2017

Citation
Citation
{Endo, Kanamori, and Mitani} 2017

Citation
Citation
{Li and Fang} 2019

Citation
Citation
{Marnerides, Bashford-Rogers, Hatchett, and Debattista} 2018

Citation
Citation
{Lee, An, and Kang} 2018

Citation
Citation
{Santos, Tsang, and Kalantari} 2020

Citation
Citation
{Liu, Lai, Chen, Kao, Yang, Chuang, and Huang} 2020

Citation
Citation
{Yu, Liu, Long, Dong, Zou, and Xiao} 2021{}

Citation
Citation
{Debevec, Yu, and Boshokov} 1998

Citation
Citation
{Gortler, Grzeszczuk, Szeliski, and Cohen} 1996

Citation
Citation
{Hedman, Ritschel, Drettakis, and Brostow} 2016

Citation
Citation
{Hedman, Philip, Price, Frahm, Drettakis, and Brostow} 2018

Citation
Citation
{Meshry, Goldman, Khamis, Hoppe, Pandey, Snavely, and Martin-Brualla} 2019

Citation
Citation
{Thies, Zollh{ö}fer, and Nie{T1ss }ner} 2019

Citation
Citation
{Flynn, Broxton, Debevec, DuVall, Fyffe, Overbeck, Snavely, and Tucker} 2019

Citation
Citation
{Mildenhall, Srinivasan, Cayon, Kalantari, Ramamoorthi, Ng, and Kar} 2019

Citation
Citation
{Zhou, Tucker, Flynn, Fyffe, and Snavely} 2018

Citation
Citation
{Sitzmann, Thies, Heide, Nie{T1ss }ner, Wetzstein, and Zollh{ö}fer} 2019

Citation
Citation
{Cho, van Merrienboer, G{ü}l{ç}ehre, Bahdanau, Bougares, Schwenk, and Bengio} 

Citation
Citation
{Riegler and Koltun} 2020

Citation
Citation
{Riegler and Koltun} 2021

Citation
Citation
{Huang, Chen, Ceylan, and Jin} 2017

Citation
Citation
{Serrano, Kim, Chen, DiVerdi, Gutierrez, Hertzmann, and Masia} 2019

Citation
Citation
{Attal, Ling, Gokaslan, Richardt, and Tompkin} 2020

Citation
Citation
{Lin, Xu, Mildenhall, Srinivasan, Hold-Geoffroy, DiVerdi, Sun, Sunkavalli, and Ramamoorthi} 2020

Citation
Citation
{Bertel, Yuan, Lindroos, and Richardt} 2020

Citation
Citation
{Xu, Zheng, Xu, Tang, and Gao} 2021

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Zhang, Riegler, Snavely, and Koltun} 2020



4 GERA, KARIMI, RENAUD, PJN, LALONDE: PANOHDR-NERF
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Figure 2: Overview of our pipeline. At training time (left), the captured panoramas are
linearized (calibrated using a color checker, not shown) and processed by a pre-trained
LDR2HDR network to obtain HDR estimates. The HDR panoramas, along with the camera
poses obtained with OpenSfM [29], are used to train the PanoHDR-NeRF network, which
learns to synthesize HDR scene radiance at any point in the scene. At inference time (right),
we simply provide the novel camera pose and obtain the corresponding novel HDR panorama.

each separately. Mega-NeRF [49] divides the scene into smaller sections. Block-NeRF [46]
splits city-scale scenes into blocks, trains a NeRF for each block, and combines the results.
Mip-NeRF [2, 3] replaces rays with anti-aliased conical frustums for speed and accuracy.
NeRF with HDR images has been explored in two works. NeRF in the dark [35] train directly
on linear RAW images with higher effective dynamic range (14-16 bits compared to more
typical 8-bit cameras). Huang et al. [22] train from a set of LDR images captured at alternating
exposures. Both methods require multiple LDR images at different exposures, which is time-
consuming to capture and requires specialized setup. In contrast, our method plausibly
predicts the full dynamic range from a single casually captured video. Finally, panoramic
images have been explored in [16, 20], who present a method to synthesize panoramas from
a single omnidirectional input. They require depth as input and novel views can only be
rendered on a straight line path. CylindricalNeRF [23] proposes cylindrical sampling for
unbounded scenes captured in circular trajectory. OmniNeRF [15] synthesizes novel fish-eye
projection images, using spherical sampling to improve the quality of results as we do.
HDR scene capture Zhang et al. [56] leverage an RGBD scan of an indoor scene and
estimate scene parameters including HDR radiance over scene geometry. Walton et al. [50]
combine a depth sensor with a fisheye camera in a SLAM-based approach to recover geometry
and lighting. Tarko et al. [47] takes an omnidirectional video as input and uses inverse tone
mapping [10] to convert it to HDR. Yang et al. [53] learn background and objects as separate
NeRF models and combine them with a captured panoramic image into a single scene. Our
method synthesizes panoramas from novel viewpoints with full dynamic range.

3 Method

Given a set of LDR panoramas {Ik}N
k=1 captured freely using an off-the-shelf 360◦ camera

and associated camera poses {Pk}N
k=1 obtained with SfM, our objective is to predict the HDR

radiance of the scene at any novel viewpoint. We achieve this by recovering HDR values
from LDR frames using learning-based inverse tone mapping and then using them as the
supervision for novel view synthesis. An overview of our method is given in fig. 2.
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Cafeteria Chess room Dark class Spotlights

Figure 3: Representative images from each test scene used in the experiments.

3.1 High dynamic range with LDR2HDR network
Extrapolating HDR from LDR inputs is typically framed as recovering values in the over- and
under-exposed regions. Our work focuses on recovering the over-exposed regions exclusively,
with the goal of predicting accurate HDR radiance values (specially the intensities of light
sources) for realistic virtual object insertion.
Network architecture We borrow the network architecture proposed in Luminance Atten-
tive Networks (LANet) [55], which is designed as a multi-task network with two luminance
attention and HDR reconstruction streams. The former attempts to create a spatially-weighted
attention map of the over-exposed regions in the input image, while the latter uses the attention
map to estimate the HDR images. Note that we do not use their proposed adaptation for
panoramas since it did not improve the performance in our case. So, we train the model on
equirectangular images directly.
Loss functions For the LDR2HDR module, we use the same loss function ℓlanet as [55],
combining scale invariant and luminance segmentation losses. The HDR panoramas are
radiance values used to light the scene. To match rendering quality, we use a rendering loss

ℓrend = ||T yHDR −T tHDR||2 , (1)

where T is a pre-computed transport [45] matrix for a Lambertian scene (single bounce),
yHDR is the predicted HDR panorama, and tHDR is the ground truth. A top-down view of a
“spiky sphere“ on a plane is used for T. The rendered images guide the network about the
color and direction of HDR lighting in the scene. The final loss for training the LDR2HDR
network is an equally weighted combination ℓhdr = ℓlanet + ℓrend.

Datasets We pretrain the LDR2HDR network on the Laval Indoor HDR Dataset [13],
which consists of 2,400 HDR panoramas captured in a variety of indoor settings, with a train,
validation and test split as 80:10:10. Since the sensor used to capture it (Canon 5D Mark
iii camera) and the sensor we use to capture indoor scenes (Ricoh Theta Z1) are different, a
domain gap was observed. To alleviate this, we finetune the LDR2HDR network on a small
dataset of 78 HDR panoramas captured at different locations, different from the test scenes,
using the target sensor (Theta Z1).

3.2 Continuous HDR radiance with PanoHDR-NeRF
Network architecture We take inspiration from and combine several recent works on NeRF.
First, we employ the NeRF++ architecture as the base. Second, similar to [3], we incorporate
the anti-aliased conical frustums from Mip-NeRF [2]. We train PanoHDR-NeRF by sampling
rays in spherical coordinates instead of pixel coordinates (more details in supplementary).
Loss functions We train PanoHDR-NeRF using supervision from LDR2HDR network.
Traditional volume rendering methods are used to predict the radiance and densities of points
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Dataset
Input LDR LDR2HDR pre-trained LDR2HDR finetuned

PU-PSNR↑ RMSE↓ HDR-VDP3↑ PU-PSNR↑ RMSE↓ HDR-VDP3↑ PU-PSNR↑ RMSE↓ HDR-VDP3↑

Chess room 31.659 0.051 8.067 33.994 0.048 8.234 36.995 0.005 8.492
Stairway 31.964 0.224 7.881 33.297 0.213 8.016 33.685 0.019 8.489
Cafeteria 25.299 5.378 6.098 26.664 5.268 6.418 28.499 4.061 7.164
Spotlights 23.939 3.489 6.001 25.118 3.438 6.097 28.966 0.877 7.667
Dark class 30.657 0.364 7.429 32.125 0.340 7.592 32.594 0.262 8.135
Small class 32.353 2.162 8.018 34.095 1.889 8.267 35.465 0.221 8.678

Overall 28.399 1.703 7.243 30.913 1.634 7.406 33.651 0.696 8.209

Table 1: Quantitative comparison of different strategies for recovering radiance across cap-
tured scenes. “Input LDR” are on the images captured by the camera, “LDR2HDR pre-trained”
is on our network pre-trained on the Laval Indoor Dataset, and “LDR2HDR finetuned” is
after the network finetuned to test camera. As expected, finetuning helps bridge the domain
gap and significantly improves the results. Results are averaged over different viewpoints.

Input LDR LDR2HDR pre-trained LDR2HDR finetuned HDR ground truth

Sp
ot

lig
ht

s
St

ai
rw

ay
Sm

al
lc

la
ss

Figure 4: Qualitative comparison of different strategies for recovering radiance across captured
scenes. For each example, the figure shows virtual test objects relit to demonstrate the dynamic
range. Note that despite some color imbalance (e.g. “Spotlights”), fine-tuning helps bridge
the domain gap between the training data and the captured images. Images tonemapped for
display with γ = 2.2.

sampled on the ray as in [2, 58]. We define NeRF loss ℓnerf between predicted radiance ê and
ground truth HDR e as

ℓnerf = ∑
r∈R(P)

∥Ê(r)−E(r)∥2, (2)

where E = log(1+ e) and R(P) is the set of camera rays at pose P. The photographer, who
inevitably is in the images, is segmented using an off-the-shelf segmentation algorithm [17],
and the corresponding pixels are ignored in the loss.
Datasets To obtain training data for a given indoor scene, we casually capture a set of
LDR panoramas using a commercial 360◦ camera (Ricoh Theta Z1). We attach the camera
to a portable tripod and capture a 360◦ video while waving the camera around the scene to
cover the entire volume as much as possible for a few minutes (typically 3–5 minutes for the
scenes used in the experiments). Approximately 200 frames are then extracted from the video
at even intervals. The camera parameters of the input LDR panoramas are recovered using
OpenSFM[29] and given as input to PanoHDR-NeRF.
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4 Evaluation
In this section, we evaluate our approach against a set of challenging real scenes, where the
ground truth HDR radiance is also captured at several locations. We further establish the
sensitivity of design choices and compare them to closely related techniques.

4.1 Radiance capture evaluation dataset
For evaluation, we capture different real indoor scenes from a variety of different environments
(fig. 3). For each scene, we first capture a 360◦ video using the Ricoh Theta Z1 panoramic
camera as described in sec. 3.2. We also capture a set of HDR panoramas for evaluation to
use as ground truth. To obtain these, we set the camera on a tripod at certain locations in
the scene (between 3–10 locations per scene) and program it using exposure bracketing to
capture 11 exposures spanning over 22 f-stops that are subsequently merged to HDR using
the PTGui Pro commercial software. We also capture a short video with the same camera
parameters as the captured video at the same location as the HDR. We then extract a single
frame from that video, allowing us to have an LDR image at the exact same location as
its HDR counterpart. The resulting LDR image is linearized using a pre-calibrated camera
response function obtained with a Macbeth color checker. In total, we capture six different
scenes containing a total number of 10 LDR/HDR ground truth panorama pairs.

4.2 LDR2HDR evaluation
The LDR2HDR network presented in sec. 3.1 is evaluated on the test set described in sec. 4.1.
Tab. 1 compares the performance obtained by: using the LDR images directly, the LDR2HDR
network pre-trained on the Laval Indoor HDR Dataset [13], and after fine-tuning on the 78
HDR dataset captured with the same test camera. For evaluation, we use the “PU-PSNR” [28],
which is a perceptually-uniform PSNR adjusted for HDR images. In addition, the “RMSE”
corresponds to the rendering loss in eq. (1). Finally, we also report the HDR-VDP3 [37],
where a value of 10 indicates a perfect match. Here, color encoding is set as “rgb-bt.709” for
HDR evaluation, assuming a 24-inch display, 1920×1080 resolution, and a viewing distance
of 1 meter.

As shown in tab. 1 and illustrated qualitatively in fig. 4, there exists a significant domain
gap between the training dataset and the test camera: simply pre-training on [13] works
marginally better than the input LDR image itself, but finetuning results in a significant
performance gain on all metrics. Visually, finetuning produces renderings that look very
similar to the ground truth (fig. 4).

4.3 PanoHDR-NeRF evaluation
To evaluate how well PanoHDR-NeRF works in terms of capturing the high dynamic range
radiance field, we use the same set of ground truth HDR images as described in sec. 4.1. We
infer environment maps at the locations of HDR panoramas and use them to render a synthetic
scene. We modified NeRF++ to work with equirectangular image representation and trained
directly on the LDR frames of the input video. The rendering results of NeRF++ appear dark
compared to ground truth, and the lighting is not realistic (fig. 5). In addition, the generated
shadows are soft and faded. In contrast, PanoHDR-NeRF produces well-lit results, with sharp
shadows that are similar to ground truth.

Citation
Citation
{Gardner, Sunkavalli, Yumer, Shen, Gambaretto, Gagn{é}, and Lalonde} 2017

Citation
Citation
{Mantiuk and Azimi} 2021

Citation
Citation
{Narwaria, Mantiuk, Silva, and Callet} 2015

Citation
Citation
{Gardner, Sunkavalli, Yumer, Shen, Gambaretto, Gagn{é}, and Lalonde} 2017



8 GERA, KARIMI, RENAUD, PJN, LALONDE: PANOHDR-NERF

w/o render loss render loss
PU-PSNR↑ HDR-VDP3↑ PU-PSNR↑ HDR-VDP3↑

Hall. Net [27] 30.06 7.54 31.51 8.12
LANet [55] 32.43 8.26 38.20 9.67

Table 2: Quantitative comparison of two single image HDR estimation architectures on the
Laval Indoor HDR test set, with and withough the rendering loss ℓrender while training the
network. Render Loss with LANet significantly improves the results.

Dataset
Linear loss PanoHDR-NeRF NeRF-LDR2HDR

PU-PSNR↑ RMSE↓ PU-PSNR↑ RMSE↓ PU-PSNR↑ RMSE↓

Chess room 35.152 0.011 36.941 0.012 35.991 0.006
Stairway 31.810 0.055 33.169 0.056 32.707 0.055
Cafeteria 24.139 4.376 28.029 4.179 26.537 5.298
Spotlights 26.719 0.909 28.657 0.431 27.324 1.619
Dark class 28.431 1.367 30.687 1.509 29.819 0.621
Small class 36.829 0.043 37.687 0.054 38.529 0.006

Overall 29.725 1.071 32.528 1.038 31.650 1.301

Table 3: Quantitative comparison between linear (left) and log (middle) losses used for
training. Comparison of PanoHDR-NeRF with NeRF then LDR2HDR is at right

4.4 Ablation study

LDR2HDR network architecture We compare between two recent SOTA single image
HDR estimation architectures, namely HallucinationNet [27] and LANet [55], with and
without our rendering loss. For this, we evaluate on the Laval Indoor HDR [13] test set
and report results in sec. 4.4. With its saturation-driven attention, the LANet architecture
outperforms HallucinationNet. In addition, the use of the rendering loss ℓrend (eq. (1)) helps the
network focus on the bright light sources, which is crucial for accurate radiance reproduction.

Planar vs spherical sampling We compare the impact of planar vs spherical sampling
(check supplementary) for training our network on LDR images. In both cases, we follow the
hierarchical sampling strategy of NeRF [34] and train the network with 64 coarse samples
and 128 fine samples. We observe that sphere sampling outperforms planar sampling for
omnidirectional images as it does not oversample points at the poles but does so uniformly on
the sphere. (more details in supplementary)

Loss in log space We evaluate the importance of computing the loss in log space (c.f.
sec. 3.2) in sec. 4.4, which suggests that the network is able to estimate the high dynamic
range equally well with or without the log-space loss. However, fig. 6 shows that training in
linear space results in more floating artifacts and blurrier images than those obtained by the
log loss. This is because HDR intensities vary significantly and log space helps us restrict the
range which in turn makes it easier for NeRF-MLP to predict the radiance values.

Order of operations PanoHDR-NeRF uses a NeRF network trained on HDR images. It is
also possible to reverse the order by training the NeRF on LDR images and pass its output
through the LDR2HDR network (dubbed “NeRF-LDR2HDR”). We compare these options in
sec. 4.4 and fig. 5. Though the metrics given in the table don’t differ much, the supplementary
video shows PanoHDR-NeRF produces temporally more stable results. This could be due to
the averaging that naturally happens within the NeRF network.
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Input LDR NeRF++ NeRF-LDR2HDR PanoHDR-NeRF (ours) GT

(a) Spotlights

(b) Dark Class

(c) Small Class

(d) Stairway

(d) Chess Room

(e) Cafeteria
Figure 5: Comparing input LDR, NeRF++, NeRF-LDR2HDR, PanoHDR-NeRF (ours), and
GT panoramas. For each example, the figure shows a virtual test object relit to show the
dynamic range. While NeRF++ is able to model the scene correctly, it is unable to capture
the radiance of the scene. PanoHDR-NeRF is able to faithfully capture the radiance of the
scene. We compare it with NeRF-LDR2HDR which estimates HDR from NeRF++ outputs.
Although it is able to closely estimate the radiance, it leads to flickering between consecutive
frames. Images tonemapped for display with γ = 2.2.
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Figure 6: Comparing panoramas generated by PanoHDR-NeRF after loss in linear space and
log space. For each example, the figure shows (top) the panorama with (bottom) virtual test
objects relit to show the dynamic range. While the network learns the high dynamic range in
both cases, we observe that taking loss in linear space leads to poor visual quality and floating
artifacts in the output panoramas. PanoHDR-NeRF produces better results when trained in
log space, consistent with [25, 42, 55].
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5 Discussion and conclusion

The main contribution of this work is a novel pipeline to predict the full HDR radiance of
an indoor scene without using special hardware, careful scanning of the scene, or intricately
calibrated camera configurations. Our pipeline can work with a single, off-the-shelf 360◦

camera that is moved around the scene. Although [22, 35] have demonstrated recovery of
HDR intensities of forward facing scenes, they require multiple sets of LDR images at various
exposures. Recovering HDR intensities for large indoor scenes using these methods requires
an elaborate setup which is tedious and cumbersome. PanoHDR-NeRF can render novel
360◦ views from any point within an unbounded indoor scene in high dynamic range from a
casually captured video. We show their use for the realistic relighting of virtual objects in
real scenes, hopefully getting one step closer to democratizing augmented reality.
Limitations and future work Blurriness of the NeRF results is a big limitation of this work,
despite using cone-casting from Mip-NeRF. We believe further improvements such as [3] can
help in reconstructing sharper estimates. Another limitation is that the photographer capturing
the scene ends up modifying the light field ever so slightly by casting shadows, creating
reflections off of shiny surfaces, etc. Unfortunately, the intensity changes this creates are
too soft for existing shadow detectors [51]. Methods modeling transient changes [31] could
potentially be of help. The finetuning for each camera introduces additional effort though
only once per camera. Future research can improve generalization across cameras, perhaps
using multiple cameras for training, or through other data augmentation techniques. Our
approach learns radiance and view synthesis in two independent steps by specialized networks.
Exploring how both can be done simultaneously, potentially in conjunction with geometry
and material estimation [5, 59], is an exciting direction for future work. PanoHDR-NeRF
assumes that the scene is static, so the lighting should remain unchanged for the inference
time. In addition, PanoHDR-NeRF is an offline method and therefore the novelty of the
proposed method is limited to only capturing process and not rendering. Recent efforts have
demonstrated how to significantly shorten training [36, 54] and inference [12, 38] times of
NeRF-based approaches, these could straightforwardly be incorporated into our framework.
By reducing the time between capture and visualization, PanoHDR-NeRF can be used for
AR/VR applications such as virtual tours and VFX generation.
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