Casual Indoor HDR Radiance Capture from Omnidirectional Images Pulkit Gera¹, Mohammad Reza Karimi Dastjerdi², Charles Renaud², P.J Narayanan¹, Jean-François Lalonde²

INTRODUCTION

- Capturing radiance of a scene crucial for AR/VR apps
- Need special equipment to capture HDR images and takes lot of time
- Predict HDR light probes at novel locations from casually captured LDR panoramas.

Dataset

Chess room

Stairway

Cafeteria

Spotlights

Dark class

31.659

31.964

25.299

23.939

30.657

- Laval Indoor Dataset
- Domain Gap cause diff. sensor for train and captured data
- Finetuned on 78 HDR captured panoramas
- Relight a small scene with HDR 🗟 lightprobes and take MSE loss on rendered image

PREPROCESS

- Capture LDR panoramas using Rico ThetaZ
- Generate masks and
- remove subject

Input LDR panoramas

• Estimate camera poses using OpenSFM

- Estimate HDR panoramas using LDR2HDR module
- Train PanoHDR-NeRF module to predict HDR panoramas at novel viewpoints

• For a novel camera viewpoint, infer HDR lightprobes

Trained PanoHDR-NeRF

RESULTS - Virtual Test Object Relit Shows Dynamic Range

• Comparison with other baselines and methods. Input LDR NeRF++

- Scene as a HDR Radiance Field.Predict radiance and density
- Decompose into foreground and background
- Spherical sampling for omnidirectional images
- NeRF loss between predicted log radiance Ê and GT log radiance E for set of all rays poses $\Re(P)$. Training in log space is more stable.

$$\ell_{\text{nerf}} = \sum_{\boldsymbol{r} \in \mathcal{R}(\mathbf{P})} \|\hat{E}(\mathbf{r}) - E(\mathbf{r})\|^2$$

	Linear loss		PanoHDR-NeRF		NeRF-LDR2HDR	
Dataset	PU-PSNR↑	RMSE↓	PU-PSNR↑	RMSE↓	PU-PSNR↑	RMSE↓
Chess room	35.152	0.011	36.941	0.012	35.991	0.006
Stairway	31.810	0.055	33.169	0.056	32.707	0.055
Cafeteria	24.139	4.376	28.029	4.179	26.537	5.298
Spotlights	26.719	0.909	28.657	0.431	27.324	1.619
Dark class	28.431	1.367	30.687	1.509	29.819	0.621
Small class	36.829	0.043	37.687	0.054	38.529	0.006
Overall	29.725	1.071	32.528	1.038	31.650	1.301

8.067

7.881

6.098

6.001

7.429

Input LDR

0.051

0.224

5.378

3.489

0.364

OpenSfM

33.994

33.297

26.664

25.118

32.125

LDR2HDR pre-trained

PU-PSNR↑ RMSE↓ HDR-VDP3↑ PU-PSNR↑ RMSE↓ HDR-VDP3↑ PU-PSNR↑ RMSE↓ HDR-VDP3↑

0.048

0.213

5.268

3.438

0.340

PanoHDR-NeRF

Camera poses

8.234

8.016

6.418

6.097

7.592

36.995

33.685

28,499

28.966

32.594

LDR2HDR network

LDR2HDR finetuned

0.005

0.019

4.061

0.877

0.262

8,492

8.489

7.164

7.667

8.135

Novel Camera Pose

Predicted HDR panoramas

Inferred HDR panoramas

Novel HDR panorama

• NeRF++ cant predict HDR Radiance. NeRF-LDR2HDR has flickering artifacts.

GT

NeRF-LDR2HDR PanoHDR-NeRF (ours)