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Abstract

Multi-label image classification aims to predict all possible labels in an image. It
is usually formulated as a partial-label learning problem, since it could be expensive in
practice to annotate all the labels in every training image. Existing works on partial-label
learning focus on the case where each training image is labeled with only a subset of its
positive/negative labels. To effectively address partial-label classification, this paper pro-
poses an end-to-end Generic Game-theoretic Network (G2NetPL) for partial-label learn-
ing, which can be applied to most partial-label settings, including a very challenging,
but annotation-efficient case where only a subset of the training images are labeled, each
with only one positive label, while the rest of the training images remain unlabeled. In
G2NetPL, each unobserved label is associated with a soft pseudo label, which, together
with the network, formulates a two-player non-zero-sum non-cooperative game. The ob-
jective of the network is to minimize the loss function with given pseudo labels, while
the pseudo labels will seek convergence to 1 (positive) or 0 (negative) with a penalty
of deviating from the predicted labels determined by the network. In addition, we in-
troduce a confidence-aware scheduler into the loss of the network to adaptively perform
easy-to-hard learning for different labels. Extensive experiments demonstrate that our
proposed G*NetPL outperforms many state-of-the-art multi-label classification methods
under various partial-label settings on three different datasets.

1 Introduction

Based on deep-learning techniques, significant progress has been made on single-label image
classification [10] where each image only has one label. However, in many real applications,
one image may contain multiple objects and/or exhibit multiple attributes which cannot be
well described by a single label. This leads to an important computer-vision task of multi-
label image classification that aims to identify all the labels of an image. One main challenge
in deep-learning based multi-label image classification comes from the requirement of large-
scale labeled training images. In particular, many supervised-learning algorithms require all
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the labels present in each training image to be accurately annotated and this full-label manual
annotation can be very difficult and laborious [11].

To relieve the annotation burden of full labeling, several recent works on multi-label clas-
sification consider the use of training image data with partial labels [8, 12, 16, 17, 22, 32, 46],
where only a limited number of labels are annotated on each image. A special case is the
full-set-single-positive-label (FSPL) setting, which requires to annotate only one positive la-
bel for each training image [8]. While these partial-label settings can mitigate the annotation
burden, one still needs to label all training images. To go one step further, the subset-single-
positive-label (SSPL) setting only requires to label a subset of the training images and for
each labeled image, only one positive label is annotated [1]. For example, each image in
the iNaturalist dataset only has one positive label with other classes unlabeled [8]. Adding
new unlabeled images to enrich this dataset leads to SSPL, which is considered a practi-
cal scenario. Actually, this applies to most datasets for multi-class classification. Adding
new unlabeled images makes those datasets suitable for the multi-label problem under SSPL
without annotation costs.

Clearly, this SSPL setting can further reduce the annotation burden for large-scale datasets.
However, the inclusion of unlabeled images raises a great challenge in network design and
training. On one hand, those existing partial-label learning methods based on label corre-
lation [16] and label matrix completion [4] are not applicable to SSPL since they cannot
handle single positive labels and unlabeled data simultaneously. On the other hand, although
semi-supervised learning can deal with unlabeled images, it is usually designed based on
the assumption of having a subset of fully-labeled training images, but not specifically for
SSPL setting that does not offer such a subset. Therefore, the performance of the existing
semi-supervised models on SSPL setting may be degraded.

This paper presents a new generic game-theoretic network (G?NetPL) for end-to-end
training of the multi-label classifier under SSPL setting. In G>NetPL, each unobserved label
is associated with a soft pseudo label, which acts as a player in a two-player non-zero-sum
non-cooperative game with the objective of converging to 1 (positive) or 0 (negative), given
a penalty of deviating from the predicted labels determined by the network. As the second
player, the network is to minimize a weighted loss function with given pseudo labels. Our
contributions are summarized as follows:

* We propose a novel G*NetPL for partial-label image classification, focusing on SSPL
setting with the understanding that G*NetPL can be applied to most, if not all, partial-
label settings. Within this game-theoretic framework, the two players, the network and
the pseudo labels, are updated with different objectives. Accordingly, different loss
functions are developed for players. Therefore, the network can, from a game-theoretic
point of view, achieve robustness with respect to errors in pseudo label estimation.
Meantime, the existence of Nash equilibrium will guarantee convergence in training.

* We introduce the confidence level of pseudo labels into our loss function, where less
weights will be considered for those pseudo labels with low confidence levels. This is
critical, especially at the early stage of training when the observed labels are lack and
the confidence levels on the pseudo labels are low. Otherwise, premature convergence
could be achieved with low confidence levels due to lack of observed labels.

» Extensive experimental results show that G2NetPL outperforms the state-of-the-arts
under different partial-label settings on three widely-used datasets. With fewer ob-
served labels in SSPL setting, our method can still get comparable classification results
as those methods using FSPL setting.
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2 Related Work

This section briefly reviews previous works for partial multi-label image classification.

Partial Labels. To address the unobserved labels, which can be positives or negatives,
several works simply tend to regard unobserved labels as negative [3, 5, 27, 36]. This
assumption usually leads to a significant performance drop by incorrectly initializing the
positive labels as negatives [18]. Others tend to find the unobserved labels via label correla-
tions [27, 45], label matrix completion [4, 41], low-rank learning [47, 48], and probabilistic
models [6, 21]. Most of these methods do not allow end-to-end training. Recently, several
end-to-end models are proposed for the partial-label setting [8, 12, 16]. In [16], image and
label similarity graphs are built to estimate the unobserved labels. The construction of label
graphs relies on the label co-occurrence information in the training data. This method is
not applicable to single-positive-label (SPL) settings which has at most one observed label
per image. Durand et al. [12] adopt both the graph neural network and curriculum learning
to find the relations between the labels and complete the unobserved labels. This approach
depends on a fixed threshold to add “easy-unobserved” labels to the loss function. Once the
network is updated, those previously predicted unobserved labels will be discarded, which
makes this approach heuristic without continuity in learning. Different from that, G*NetPL
can forecast convergence and optimality. In addition, our model will use every unobserved
labels in training, while in [12] there is a possibility that some unobserved labels are never
selected before the model converges, due to the threshold-based strategy.

Semi-supervised learning, on the other hand, is a widely used technique for leveraging
a large unlabeled dataset alongside a small fully-labeled subset [2, 25, 30, 33, 35, 40]. As
mentioned in [33], however, most semi-supervised models focus only on single-label clas-
sification problem. To fit into multi-label classification, modifications are necessary. Other
related works exploit the label ranking [20] and label correlations [37] to learn from positive
and unlabeled data. However, these methods require more than one positive label per image
so that pairwise label dependencies can be utilized.

Full-set Single Positive Label. The FSPL setting was proposed by Cole et al. [8] most re-
cently, where only a single positive label is observed on each training image. This model
jointly trains the image classifier and the label estimator using the online label estimation.
However, the online estimation requires to store the full labels of all the training data in
the memory [8]. In addition, the label estimator is randomly initialized which leads to in-
ferior model in end-to-end setting and the observed/unobserved labels are addressed with
equal weights. Different from that, G?NetPL defines a game between the network and the
pseudo labels, each of which has its own goal to achieve. Moreover, the introduction of the
confidence level places different weights for unobserved labels in the loss function of the
network, which can gradually move the learning from observed labels to unobserved labels
without being over-confident. Moreover, G*NetPL learns pseudo labels for images in each
mini-batch without requiring keeping all training data in the memory.

Subset Single Positive Label. To the best of our knowledge, there is no work explicitly
exploring SSPL in-depth for multi-label image classification. As mentioned above, with
necessary modifications, some semi-supervised learning algorithms, such as Fixmatch [35]
and UPS [33], can work under this setting. In the experiments, we compare the performance
of our proposed G?>NetPL with these semi-supervised methods under SSPL settings.
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Figure 1: An overview of G2NetPL that consists of two players: the network and the pseudo
labels. The network includes backbone and one-layer classifier to generate a prediction for
an input image. The loss function for the network is L2y pr. that is a function of the network
parameters 6; with given pseudo labels. The pseudo labels ¥, are iterated to minimize the
cross-entropy loss function Lacg between the pseudo labels and the predicted labels.

3 The G*NetPL Framework

Notations. Let Z be the set of all training images and D be the subset of Z, of which each
element has a single positive label. The images in Z \ D remain unlabeled. Let y! be the
L-dimension label vector associated with image i € D, where L is the number of the total
classes. The jth entry of y! can be 1 or @, which means that the jth class is observed positive
or unlabeled, respectively. Therefore, D provides the ground truth characterized in y. We
denote the classifier by f(i,6;) that maps image i into a predicted label vector yi € [0, 1]F,
ie., §! = f(i,6,). Here 6, is the network parameters obtained at epoch ¢ during training.
To characterize the unobserved labels during training, we take advantage of soft pseudo
labels [39] and use ¥, € [0,1]% to denote the soft pseudo label vector of image i € Z at
epoch 7. In the following discussion, we will drop the index i for notational simplicity, if it is
clear in context. The cross-entropy loss function between two scalars p,q € [0,1] is defined
as L(p,q) = —plog(q) — (1 — p)log(1 — g). Given v € RE, [v]; denotes the jth entry of v.

3.1 Overview

The G?NetPL is shown in Fig. 1, which introduces a two-player non-zero-sum non-cooperative
game between the network and the pseudo labels. The 2-player game we employ contains
three basic elements of a game: a set of players (pseudo labels and network), a set of strate-
gies or actions for players (y, for pseudo labels and 6 for the network), and the associated
costs (Lace and Lgonepr)- In our game, the payoff of each player is determined by the
strategies of both players. The objective of the network is to minimize the loss function
Lanepr, Ou affects Lganepr, through the scheduler §), while the goal of the pseudo labels
is to converge to 1 or 0 with a penalty of deviating from the predicted labels generated by
the network (0 affects Lcg through the predicted labels). The Nash equilibrium makes both
players have no incentive to change its current strategy. During training, the pseudo label
vector ¥y, o of each image in Z will be initialized with 1 for the observed labels and the unbi-
ased probability 0.5 for the unobserved labels, which means equal distance to 1 (positive) and
0 (negative). Based on received §,,, the network updates its parameter 6; which minimizes
the loss function L£g2nepr- Once the 6; is determined, the pseudo label $,, ;1 will be iterated
to minimize cross-entropy loss function Lacg, given §; predicted by the network with 6;.
This process repeats until both network parameters and the pseudo labels converge to Nash
equilibrium, which provides robustness in learning. During testing, only the backbone and
the classifier will be used to predict the labels.
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3.2 The Loss of Pseudo Labels

As mentioned in context, the objective of the pseudo labels is to converge to the true 1
or 0 with the predicted labels from the network as a reference. A penalty will be placed
when the pseudo label J,; deviates from the predicted label J;. To present the loss function
Lack, we first introduce the pseudo label latent parameter y,; € RE and a mapping function

F: R — [0, 1} SuCh that b’)\m[]j — F([yu [] ) J — 1 2 (1)

The pseudo label latent parameter y,, is actually a project of §,, on RL. TInversely, the
function F(-) regulates [y,]; into [0, 1] We define the augmented cross-entropy loss £acg
based on y,, adding a penalty on [j,,]; when deviating from 0 and 1. For instance, the loss
function to be minimized can be formulated as

L
LAcePtsYur) Z, (D)o F (Due) i) + A F (el ) (1= F ([ue] 1))] 2

where A; is a positive weighting constant. Notice that the function F(-) must be a function
which outputs 1 when [y,,]; approaches +co and 0 when [y,,]; approaches —co. If F is
smooth, then based on the chain rule in derivative,

chCEM,]_,.<yz,yu,,>:(Mw Mym F ) G

Letting VEACE[},M]]()?I, yuy) = 0 indicates that the
optimal [y,,]; will satisfy either F'([y.];) = 0 or

Wfi&n +Aj —2A[$u,]; = 0. If we can obtain an

explicit solution on [,,];) in the former equation, then

the computation cost can be dramatically saved. Mean- 0 02 o4 06 os
time, the choice of A; can be time-varying depending on 0005
9], ie. Aj = l([y,] i). If [§]; is close to 0.5, which R ég

means unrehable l can be large; otherwise, it can be $ s
small, such as the curves indicating in Fig. 2(a). The 3 26
choice of F(-) is not unique and will affect the perfor- & 0s
mance of the classifier. For instance, one candidate is 00102030405 0607 0509 1
the sigmoid function. Another interesting option is the el

cumulative distribution function (CDF) of a Gaussian

distribution with the mean at 0.5, where the associated Figure 2: (a) The probability den-

([yu il/

6=0.1

6=0.15

i

" 10 7 —
) .

probability density function is sity function of different Gaus-
1 (bu,] —o. s>2 sian distributions; (b) The sched-
F'(lyu]j) = e’ @) uler E([Puslj 1)

oV2m ’

as shown in Fig. 2(a). In this case, F'([y,,];) = 0 indicates that [y, ] ; = =eo, which are the
generalized roots to VL ACEy, > corresponding to [$,] j =1 (positive) or 0 (negative). The
parameter o is the standard deviation of this Gaussian distribution. It determines how fast
the probability increases from O to 1. For instance, when [y, ]; = 0.5, F([y.];) achieves
its maximal increasing rate, F'(0.5) = c\}ﬁ' The smaller o is, the faster F([y,,];) changes

from O to 1. In an extreme case when ¢ = 0, F’ (0.5) = oo, then F will be degraded to a
step function with 0.5 delay, which implies hard pseudo labels, i.e. [J,,]; = 1 if [yu;]; > 0.5
and [J,,]; = 0if [y,]; < 0.5. Since using hard pseudo labels may lose smoothness of Lack
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and make the results over-confident [38], it suggests that ¢ cannot be extremely small. On
the other hand, ¢ cannot be too large. Otherwise, F’([y,,|;) will be small. It means that
F([yus];) is not anxious to push [y,,]; to 1 or 0 at all, which could be contracted with the
objective of the pseudo labels that seek convergence to 1 or 0. Finally, the choice of the
augmented loss function is not unique either. For instance, another candidate can be

L
LacE@r,yur) = Y MF 0wl DOFOudid) 29,15, F ([yu1). ©)
j=1

which will amplify the cross-entropy loss when [y,]; is far away from 0 or 1. When the loss
function becomes complicated, numerical methods are necessary for the solutions.

3.3 Scheduled Loss of the Network

To learn the parameters of the primary multi-label CNN, the following loss function must be
minimized

‘CGzNetPL = 'Cobs + ‘Cunobs- (6)
Lobs is the binary cross-entropy classification loss between the observed labels and the as-
sociated predicted labels plus the regularizer that implicitly penalizes false positives (more
details on the regularizer can be found in [8]). Lynops is the weighted cross-entropy classifica-
tion loss between the pseudo labels for the unobserved labels and their associated predicted
labels. Let U; be the set of the unobserved labels in image i. Then Ly0ps is defined as

Lunobs = Z Z é(b;u.,t]j» (Pt)[' ([}A’t]ja b”\u,t}j) (N

i€T jeut;

where & ([$.]j, @) is the confidence-aware scheduler that controls the metric learning loss
and ¢, is the current epoch ¢ divided by the total number of epochs (representing a linear
scheduler [43]). In Lynobs, We exploit the soft pseudo labels instead of sharp 1 or O since
the latter may push the predictions to be over-confident [38]. In contrast, using the pseudo
labels as the distribution scores may inherit the idea of label-smoothing regularization [38].
The purpose of introducing the scheduler is to weight the unobserved loss. Different timed
schedulers have been developed such as dropout training [28], transfer learning [44], and
self-correction [23], in which cases the weighted score only relies on the iteration steps
(or epochs). Practically, if the scheduler depends on both the confidence and the iteration
steps, it may lead to improved performance. For instance, when the pseudo label [§,,]; has
low confidence, the related loss £ ([j];, [Ju.];) may deviate far away from the actual loss
between the predicted label and the true label (although unknown). Therefore, the scheduler
E([us]j» @) must be small to reduce the impact of such deviation on the total 10ss £g2nepr -
On the contrary, if [§,,]; has high confidence, &([J.];, ¢:) should be large. The pseudo
labels will gradually build up their confidence during iterations. Following this idea, we
introduce a new confidence-aware scheduler as follows, inspired by [42]:

—10]2[Ju] ;-1

1—
2 w1 -Ben ®)

1 + f}/e* 10|2[)A’u4t

E(Wudljr ) =B

where 3, v are the positive hyper-parameters. Notice that the confidence of a pseudo label is
reflected by the term |2§,, — 1|. For instance, if [§,]; is 0.5, the related & will achieve its
minimum, which means that the network is not confident about the pseudo label and the re-
lated loss should contribute less in Lg2nepy.- Otherwise, if [§,]j =0 or [§,,]j = 1, the related


Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Cole, Macprotect unhbox voidb@x protect penalty @M  {}Aodha, Lorieul, Perona, Morris, and Jojic} 2021

Citation
Citation
{Wang, Gan, Yang, Wu, and Yan} 2019

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Morerio, Cavazza, Volpi, Vidal, and Murino} 2017

Citation
Citation
{Weinshall, Cohen, and Amir} 2018

Citation
Citation
{Li, Xu, Wei, and Yang} 2020

Citation
Citation
{Wang, Chen, Wang, Long, and Wang} 2020


ABDELFATTAH, ET AL.: G*NETPL FOR PARTIAL-LABEL IMAGE CLASSIFICATION 7

& reaches its maximum, which indicates high confidence on the current pseudo label and the
associated loss should contribute more. In Fig. 2, the scheduler has lower weighted scores
over the interval 0.3 < [§,,]; < 0.7, because it represents the region with lower confidence
and the results generated over this region may potentially degrade the performance.

Algorithm 1 G*NetPL Training
Require: input image i € Z;
Require: observed label y,;

Require: neural network f(i, 0) with parameters 6 and input i.
Require: [y,]; =1 or0, if labeled; [§,]; = 0.5, if unlabeled

1: Repeat
1 — e 100205l -1] )
2: é%ﬁm“'(l—ﬁ)‘%
3 9+ f(i,0);
4: 0 +— argming Lganepr, (through back-propagation);
5: Yu argminy,, »CACE()A’JM)§
6: Bulj «— F(lval)):

7: until the max iteration or convergence;
8: Output: 0, pseudo labels y,, and predicted labels §.

Existence and Convergence of Nash equilibrium. According to the Debreu-Glicksberg-
Fan results [9, 14], if every player’s strategy set is compact and convex, and the payoff
functions are all continuous and concave (or convex if minimizing the cost), then a pure
strategy Nash equilibrium exists. In our case, the pseudo label $, stays inside [0, 1] which is
compact and convex. The related loss function Lacg is convex w.r.t. y,. Meantime, ResNet
has been shown to be (near-)convex in [31]. Therefore, as long as the network parameters
stay in a compact and convex set (although this set could be very large), Nash equilibrium
will exist and convergence can be achieved using our proposed algorithm based on fixed-
point theorem [19].

Advantages of our pseudo labels compared to existing methods. (i) Our approach can
ensure smoothness and convergence of pseudo labels during training, which are impor-
tant quality indices, while most existing methods (e.g., FixMatch [35] and UPS [33]) use
threshold-based strategies that lack the continuity and guarantee of convergence in pseudo
label updating. (ii) Our pseudo labels, as a player in the game, have their own goal, inde-
pendent of the network loss, which provide a second opinion on the quality of the network
training to avoid over-fitting, while in most existing work, pseudo labels either do not have
a clear goal or share the same loss as the network. (iii) All pseudo labels in our model will
contribute to the network loss except weight differences, while in threshold-based strategies,
there is a chance that some pseudo labels are never selected for network training, which may
result in information loss.

4 Experiments

Datasets. The PASCAL VOC [13] consists of 20 classes in 5,717 training images and the
results are reported on the official validation set (5,823 images). MS-COCQO [24] consists
of 80 classes, including 82,081 training images and 40,137 testing images. The NUS-WIDE
[7] contains 81 classes and it is split into 150K for training and 60.2K for testing.

Implementation Details. We use the same backbone architecture and the same classifier,
ResNet-50 [15] pre-trained on ImageNet [34], for all comparisons. The training is performed
in the end-to-end setting, where the parameters of the backbone and the classifier are updated
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and trained for 10 epochs [8]. The learning rate is used, varying from 1072 to 1072, with the
batch size in 8, 16. The best mean average precision (mAP) on the validation set is reported.

4.1 Full-set Single Positive Label (FSPL)

We first conduct experiments Table 1: Quantitative results (mAP) of multi-label image
with FSPL setting which has classification on four different datasets. Bold represents
100% of the training images an- the highest mAP and underline represents the second-best
notated with only one single among FSPL setting (Single positive and No negative).

positive label. To do so, we fol- Observed End-to-End Setting
low [8] by assigning randomly Losses Positive | Negative || VOC | COCO | NUS
only one positive label for each Locel2] All Al 89.11 755 | 526
. . . . Lpce-Ls All All 90.0 | 768 | 535
image in the training set with the L [12] Single Single 832 | 597 | 429
guarantee that each class has at | Lan [22] Single No 85.1 | 64.1 | 42.0
least one image labeled. Lan-vs [8] Single No 86.7 | 66.9 | 44.9

Lwan [26] Single No 86.5 64.8 46.3
Baseline. Several existing | Leer [8] Single No 855 | 63.3 | 46.0
multi-label approaches are dis- Lrove [8] Single No 879 | 663 | 43.1

Lg2nepr, (0urs) | Single No 88.8 72.4 49.7

cussed in [8], based on the vari-
ants of the binary cross-entropy (BCE) loss which is widely used in multi-label classifica-
tion. The compared approaches in our experiments include: ignoring all unobserved la-
bels L1y, assuming the unobserved labels are negatives Lan [22], smoothing the former
loss function Lan-rs, down-weighting the terms in the loss function related to negative
labels Lwan [26], expected positive regularization Lgpr [8], and online estimation of un-
observed labels Lrorg [8]. The evaluation under the FSPL setting is divided into three
categories in Table 1. In the first category, the results are evaluated in the case where all pos-
itive and all negative labels are available (“All””) with the binary cross-entropy loss function
Lpce and smoothing Lpce-rs. In the second category, the results are evaluated in the case
of assigning single observed label, positive and negative ("Single"). The results in these two
categories provide a reference of the learning performance when all labels, or more labels,
can be observed. The third category employs a fair comparison of approaches under FSPL
setting. G*NetPL runs under this category.

Discussion. As reported in Table 1, G2NetPL is trained under FSPL setting, but still achieves
comparable results to Lpcg and Lpcg-Ls, which rely on fully observed labels on VOC,
COCO, and NUS datasets. It means that G>NetPL requires much fewer labels without sig-
nificantly sacrificing the precision. For instance, on the COCO dataset, G?NetPL only uses
1.25% of the total labels to train the model, while the performance is only dropped by 4.4%,
compared with the baseline (second row in Table 1) that are trained with 100% of the labels.
In the third category of FSPL setting, GZNetPL exceeds the highest scores from the existing
methods by 0.9%, 5.5% and 3.4% over VOC, COCO, and NUS datasets, respectively.
Quality of Pseudo Labels.The quality can be evaluated by two metrics. (i) The closer a
pseudo label is to O or 1, the more indicative it is, which means higher quality. This principle
is carried by the scheduler in G*NetPL during training. (ii) If a pseudo label oscillates a
lot over epochs, it may be unreliable. So the quality can be evaluated by smoothness and
convergence, while this can be ensured by our model. Fig. 3 shows that our pseudo labels
converge without much oscillation. We evaluate the final pseudo labels against the ground
truth (GT) on Pascal under FSPL. The mAP is 93.6% for ours and 89.8% for ROLE [8],
which shows our pseudo labels are closer to GT.
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Table 2: Quantitative results (mAP) of multi-label image classification on different subsets of
the single observed label (SSPL) setting on three different datasets with End-to-End learning

settings. Bold represents the highest mAP and underline represents the second-best.
Losses COCO VOC NUS
20% | 40% | 60% | 80% || 20% | 40% | 60% | 80% || 20% | 40% | 60% | 80%
Lan [22] 463 | 53.8 | 59.5 | 624 || 513 | 71.7 | 802 | 82.8 |[ 285 | 352 | 389 | 40.8
LAN-LS 48.9 | 579 | 623 | 655 || 70.0 | 79.0 | 85.0 | 86.1 || 27.8 | 36.0 | 39.1 | 41.4
Lwan [26] 57.0 | 609 | 63.5 | 645 || 764 | 825 | 85.1 | 85.6 || 37.6 | 41.3 | 43.7 | 448
Lepr (8] 527 | 584 | 61.5 | 62.6 || 755 | 81.0 | 83.9 | 845 || 349 | 39.5 | 423 | 442
LroLg [8] 473 | 576 | 627 | 652 || 669 | 80.9 | 859 | 86.8 || 27.0 | 32.2 | 37.1 | 39.7
Lnerpr, (Ours) | 62.2 | 65.8 | 69.7 | 71.2 || 79.6 | 85.2 | 87.6 | 88.2 || 38.4 | 42.9 | 469 | 485
Pseudo Labels Predictions
D
09 / N~ T — o _//_W —
%@-—2_@5 : == — p—

Epochs : : B Epochs

Figure 3: Convergence for pseudo labels and the predictions in COCO dataset for FSPL.

4.2 Subset Single Positive Label (SSPL)

The comparison results of SSPL setting are reported in Table 2, where 20% in the table
means that only 20% of the total images have a single positive label and the rest of images
are totally unlabeled [1].

Discussion. According to Table 2, G*NetPL outperforms all the compared methods with dif-
ferent percentage of observed labels over all datasets. Among these compared approaches,
LN is considered the simplest which is widely explored [18, 22, 27]. However, its perfor-
mance is degraded by assuming the unobserved labels as negatives since those false negatives
will become noisy labels. Using label smoothing with Lan gives Lan-Ls, Which can over-
come the negative impact of noisy labels in the multi-class setting and achieve reasonable
performance as compared to £aN. As suggested in [8], we use Lan-_Ls as a baseline for
our work. We also observe that increasing the number of unobserved labels did not sig-
nificantly affect the performance of Lwan because down-weighing the terms related to the
negative labels may help reduce the effect of noisy labels. Lgprfollows the same conclusion
and performs results very close to Lwan, since the former ignores the unobserved terms and
focuses on finding the positive labels according to its regularizer. Finally, we notice that
LroLE shows a significant drop when the subset of the labeled images is small (i.e. 20%)
in the end-to-end setting, due to random initialization of the estimated labels [8] as well as
equally weighting the observed and unobserved labels. The G*NetPL still outperforms the
other methods since our game-theoretic framework not only avoids the negative factors men-
tioned before, but augments the label confidence into the weights as well. In fact, in 60%
and 80% SSPL settings, the scores of our method (reported in Table 2) are even comparable
to that under the FSPL setting (reported in Table 1). According to SSPL versus FSPL, we
observed that G?NetPL under 60% and 80% SSPL settings (Table 2) achieves comparable
results to ROLE under FSPL setting (Table 1).

4.3 Compared to Semi-Supervised Models.
This subsection compares the performance of G>NetPL with the state-of-the-art semi-supervised
models that exploit the pseudo labels to train the network, such as FixMatch [35] and
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VOC Datatset 70 COCO Datatset
87
65
84
60
2,81 By
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SSPL setting SSPL setting
m Fixmatch mUPS G2NetPL (ours) m Fixmatch mUPS W G2NetPL (ours)

Figure 4: Comparison between our proposed model and semi-supervised models on SSPL.

UPS [33], on two datasets VoC and COCO under different SSPL settings. As shown in
Fig. 4, G?NetPL outperforms FixMatch and UPS in both datasets. This is because both Fix-
Match and UPS models suffer from the same issue of using threshold-based strategies as [12]
(more details can be found in Section 2. There is a lack of continuity in pseudo label learn-
ing. In addition, a considerable number of unobserved data may be ignored during the entire
training. On the contrary, G*NetPL (game-theoretic framework) enables continuous pseudo
label training and therefore is able to capture the temporal information more effectively.

4.4 Ablation Study

G2NetPL Modules. The results are reported in Table 3 for SSPL (20%) and FSPL with
linear-init setting. Linear-init learning trains the classifier linearly for 25 epochs with fixed
parameters of the backbone and then fine-tunes for another 10 epochs to update the parame-
ters of both the classifier and the backbone [8]. We start with the basic variation of the model
which uses the cross-entropy loss on the observed labels. In this case, we assume that all the
unobserved labels are negative, since ignoring the unobserved labels may lead to overfitting.
When adding components into the model, this assumption can be removed since we use the
pseudo labels to deal with the unobserved labels. We first use the sigmoid function as F(-) to
update the soft pseudo labels which improve the mAP under different settings and datasets.
Adding the confidence-aware scheduler and applying the cumulative distribution function
of Guassian distribution as F () further enhances the overall performance, since they work
together to make the training adaptive with respect to the confidence of the pseudo labels.

Table 3: Ablation study for all proposed model components on SSPL (20%) and FSPL.

COCO dataset NUS dataset
G2NetPL Modules SSPL (mAP) FSPL (mAP) SSPL (mAP) FSPL (mAP)
Baseline 56.6 67.3 36.0 46.8
Use sigmoid as F(-) 62.4 71.1 445 49.9
Add the scheduler & 64.4 71.4 44.8 50.4
Use CDF in (4) as F(+) 65.0 72.7 453 50.9

S Conclusions

This paper presented a novel G>NetPL for multi-label image classification under partial-label
settings. In G2NetPL, two players, the network and the pseudo labels, formulate a non-zero
sum game, where the network minimizes the network loss L52n.pr. and the pseudo labels
minimize Lacg that reflects the idea of converging to 1 or 0 but penalizing deviation from
the predicted labels. Through extensive experiments on different partial-label settings, we
demonstrated that our G?NetPL outperforms several state-of-the-art methods by training on
fewer observed labels. G?NetPL is generic to all kinds of partial-label settings.

Acknowledgements. The authors gratefully acknowledge the partial financial support of the
National Science Foundation (1830512 and 2018966).
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