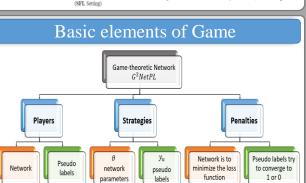
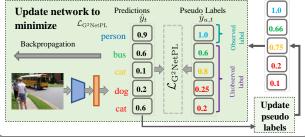
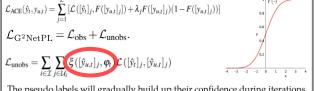

G²NetPL: Generic Game-Theoretic Network for Partial-Label Image Classification

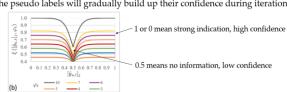

Rabab Abdelfattah¹ Xin Zhang¹ Mostafa M. Fouda² Xiaofeng Wang¹ Song Wang¹ University of South Carolina, USA Idaho State University, USA

Motivation


- Multi-label image classification aims to predict all possible labels in an image which it is expensive to annotate all the labels.
- To relieve the annotation burden of full labeling, partiallabel learning is used.

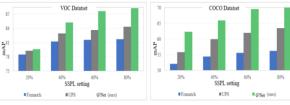


Overview of G^2 NetPL

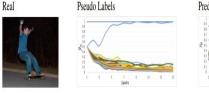

In G^2NetPL , each unobserved label is associated with a soft pseudo label, which, together with the network, formulates a two-player non-zero-sum non-cooperative game.

Loss Functions

The pseudo labels will gradually build up their confidence during iterations.



Experiments


Table 1: Quantitative results (mAP) of multi-label image classification on four different datasets. Bold represents the highest mAP and underline represents the second-best among FSPL setting (Single positive and No negative).

mong 1 of 2 setting (onigie positive and 100 negative).					
	Observed		End-to-End Setting		
Losses	Positive	Negative	VOC	COCO	NUS
$\mathcal{L}_{\text{BCE}}[25]$	All	All	89.1	75.5	52.6
\mathcal{L}_{BCE-LS}	All	All	90.0	76.8	53.5
L _{AN} [18]	Single	No	85.1	64.1	42.0
$\mathcal{L}_{\text{AN-LS}}$ [7]	Single	No	86.7	<u>66.9</u>	44.9
$\mathcal{L}_{\mathrm{WAN}}$ [22]	Single	No	86.5	64.8	<u>46.3</u>
$\mathcal{L}_{\mathrm{EPR}}$ [7]	Single	No	85.5	63.3	46.0
$\mathcal{L}_{\text{ROLE}}$ [7]	Single	No	87.9	66.3	43.1
\mathcal{L}_{G^2Net} (ours)	Single	No	88.8	72.4	49.7

Comparison with Semi-supervised models:

Convergence of pseudo labels during the epochs:

