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Abstract

In this work, we propose a novel paradigm to encode the position of targets for
target tracking in videos using transformers. The proposed paradigm, Dense Spatio-
Temporal (DST) position encoding, encodes spatio-temporal position information in a
pixel-wise dense fashion. The provided position encoding provides location information
to associate targets across frames beyond appearance matching by comparing objects
in two bounding boxes. Compared to the typical transformer positional encoding, our
proposed encoding is applied to the 2D CNN features instead of the projected feature
vectors to avoid losing positional information. Moreover, the designed DST encoding
can represent the location of a single-frame object and the evolution of the location of
the trajectory among frames uniformly. Integrated with the DST encoding, we build a
transformer-based multi-object tracking model. The model takes a video clip as input and
conducts the target association in the clip. It can also perform online inference by asso-
ciating existing trajectories with objects from the new-coming frames. Experiments on
video multi-object tracking (MOT) and multi-object tracking and segmentation (MOTS)
datasets demonstrate the effectiveness of the proposed DST position encoding.

1 Introduction
The transformer [5, 24] has introduced a new powerful paradigm for processing sequential
data. Among the innovations by transformers, positional encoding is an essential addition to
the transformer. It provides information of token position for 1D text sequences. However,
compared to its success in language models, positional encoding plays a relatively minor
role in many vision tasks, such as multi-object tracking. When applying transformers in
multi-object tracking, popular methods [12, 19, 40] still mostly rely on appearance matching
to associate targets across multiple time steps.

Typically, the positional encoding is added to the tokens in the transformer to provide
information about the relative order of the input tokens. It has properties such as being
consistent for token pairs with the same relative distance, making it ideal for processing 1D
sequences of text tokens. However, when using positional encodings in vision tasks, the
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previously defined position encoding is less well-formed to preserve position information
in images (2D) and video tubes (3D). Consequently, many transformer-based methods have
found positional encoding ineffective, especially in target tracking [19, 40] tasks, and have
stuck to applying appearance similarity as the cue to associate targets.

However, we believe position information should play a more critical role in multi-object
tracking. Moreover, by recognizing the flaws of directly migrating positional encoding from
language processing to vision tasks, we find that the key is to keep spatial and temporal in-
formation lossless in the positional encoding. Motivated by such analysis, we propose a new
paradigm of applying the positional encoding earlier, on 2D CNN feature maps, rather than
later, on projected feature vectors. We could preserve pixel order and positional information
now. Furthermore, we take advantage of the natural Fourier properties of our proposed posi-
tional encoding. By approximating the underlying Fourier and maintaining its linearity, we
can achieve a uniform position encoding form for detections and trajectories. This enables
the model to associate (1) among the detections and (2) between the detections and the tra-
jectories in the same way. As the proposed positional encoding spans every pixel densely
and can represent the pixel position evolution over time, we name it Dense Spatio-Temporal
position encoding or DST encoding. We also propose using an attention mask for more accu-
rate pixel-wise feature extraction and to avoid noise from background pixels. The attention
mask can be computed from either segmentation masks, saliency discovery maps, or other
coarse pixel-wise maps.

With the proposed DST encoding, we build a transformer-based method achieving state-
of-the-art performance on multi-object tracking and multi-object tracking and segmentation
benchmarks. We also provide an analysis of the shortcomings of classic positional encoding
and how our DST encoding improves upon it as a new baseline for future works.

2 Related Works

2.1 Tasks for Tracking Targets in Videos

Topics related to Target tracking in videos include multi-object tracking (MOT), multi-object
tracking and segmentation (MOTS), video object/instance segmentation (VOS/VIS), and
segmenting and tracking every pixel (STEP). We choose MOT [13, 20] and MOTS [25] to
evaluate our proposed method because there are multiple targets in the video and they show
long-range movement, making them suitable tasks to verify the effectiveness of our proposed
method. On the contrary, VOS/VIS datasets, such as DAVIS [16] and Youtube-VOS [31],
contain foreground objects of very different appearances or even categories and they usually
have simple and slow movement. On the other hand, STEP [27] is based on MOTS but adds
static objects to consider, such as buildings, road lanes, and trees. These objects are static
and easy to track by linear motion models and are not suitable for showcasing the advantages
of our DST position encoding.

2.2 Positional Encoding as a Representation

The currently widely used positional encoding is introduced by the transformer [24] for
language models and then extended to vision tasks [5]. Positional encoding or its variants
with different names has been studied for a long time as a form of representation. An early
work [17] has studied random Fourier features to approximate an arbitrary stationary kernel
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Figure 1: The illustration of associating targets within a video clip. For general cases, we use
bounding boxes to represent the targets of interest while we can further replace the detector
with a segmentation model to do the attention in a more fine-grained mask area. Positional
encoding is added to CNN feature maps to encode position information.

using Bochner’s theorem. It is close to the use of positional encoding in the transformer.
In computer vision, coordinate-MLPs provide a way to encode objects’ positions as weights
and are related to the study of positional encoding [22, 37]. More recently, Zheng et al.
[36] also suggest a study of positional encoding beyond a Fourier lens. They show that
non-Fourier embeddings can also serve as positional encoding and, in the perspective of
coordinate-MLPs, the performance is determined by a trade-off between embedding matrix
stable rank and the distance preservation of coordinates. However, all these explorations
have not suggested an efficient form of positional encoding for vision tasks to preserve the
spatial transformation of a series of positions.

2.3 Multi-objec Tracking Algorithms
Early works on multi-object tracking mainly focus on motion analysis on the target tra-
jectory, where the Kalman Filter is a classic solution [2]. Later, the rise of deep learning
brings the powerful deep visual representations and related algorithms follow two paradigms:
tracking-by-detection and joint-detection-and-tracking methods. Both of these paradigms in-
volve an association stage, where they mostly focus on appearance matching [15, 35], i.e.,
re-identification, without using the motion information. More recently, transformer [24] is
introduced into the area of multi-object tracking [12, 19, 33] to take advantage of its parallel
processing power. However, existing methods still neglect the information motion infor-
mation, with the exception of MOTR [33] which has attempted to model motion implicitly
using a query iteration mechanism. GTR [40] shows that using position encoding decreases
transformer performance on MOT tasks. All the evidence suggests that the existing ways
for leveraging motion and position information in transformer trackers are ineffective, which
motivates the explorations in this paper.

3 Method
In this section, we first provide an overview of the architecture of our method and then detail
its components: the design of the Dense Spatio-Temporal (DST) encoding, the attention
mask, and the training and inference configurations.
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3.1 Overview
The proposed method can make associations at two levels: between detections in a video
clip or between detections and existing trajectories.

Association of detections in a video clip. For the association of objects, we follow the
“global association” scheme widely adopted by transformer-based methods [26, 33, 40], as
shown in Figure 1. With the images of T frames as input, we first use a backbone network to
extract the feature maps. Then, a detector head is used to localize N objects of interest inside
these images with optional segmentation to gain more fine-grained feature representation.
Given the localized objects, we extract their RoI features on both CNN features maps and
DST encoding, which are of the same shape T ×C×HR ×WR, where (HR,WR) is the preset
size of RoI, e.g. 7×7. Finally, we add both features and project them to feature embeddings
of size N ×D, which we then forward into a transformer decoder to compute the attention
score matrix of size N ×N. Considering that there should be no association between objects
from the same frame, we perform softmax on each frame respectively to ensure a well-
formed association matrix.

Association between detections and trajectories. The proposed method can also perform
the association between the detections on a new-coming video frame and existing trajecto-
ries for online tracking during inference. During the online inference, we perform tracking
frame by frame by using a sliding window on the video with a stride of 1. We align the
representation of trajectories in the same shape and form as detections to enable this process
to share the same model for the detection-detection association. To represent the position
of detections on a single frame, we apply RoI to extract the corresponding area from the
DST map. However, to represent the trajectory, we now have to use the accumulated DST
encoding to record the positional evolution of the track. In this fashion, the representation
of a trajectory is designed to be the element-wise addition of accumulated DST encoding
of historical object positions and the CNN features of the object snapshot at the last frame.
The process of associating detections and trajectories is explained in Figure 2a. We perform
softmax over the dimension of detections and the dimension of trajectories, respectively, to
output the final association matrix. We use the Hungarians algorithm to ensure an one-to-
one mapping between detections and trajectories. If a detection’s attention score with all
trajectories is lower than a threshold β or all available trajectories are already associated,
this remaining detection will give birth to a new trajectory.

3.2 Dense Spatio-Temporal Position Encoding
Re-identification-based tracking methods associate targets across frames by comparing the
appearance similarity of targets, neglecting the location information. However, we believe
that location cues can significantly help associate targets because objects usually follow cer-
tain motion patterns in the real world. To present the location of each object, a navie way
is to append the bounding box coordinates to the object’s feature vector. However, this op-
eration can not scale up to trajectories of arbitrary length. Recently, the transformer has
been adopted in multi-object tracking with the one-dimensional sinusoidal positional encod-
ing [24] added to token vectors. But it is not as effective [19, 33, 40] as in the language
process tasks [24]. We argue that to scale the 1D positional encoding up to 2D images or
3D videos, we need to avoid the loss of spatial information during feature projection. We

Citation
Citation
{Wang, Xu, Wang, Shen, Cheng, Shen, and Xia} 2021

Citation
Citation
{Zeng, Dong, Wang, Zhang, and Wei} 2021

Citation
Citation
{Zhou, Yin, Koltun, and Kr{ä}henb{ü}hl} 2022

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Sun, Cao, Jiang, Zhang, Xie, Yuan, Wang, and Luo} 2020

Citation
Citation
{Zeng, Dong, Wang, Zhang, and Wei} 2021

Citation
Citation
{Zhou, Yin, Koltun, and Kr{ä}henb{ü}hl} 2022

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017



J. CAO ET AL.: DENSE SPATIO-TEMPORAL POSITION ENCODING 5

...

frame t

new frame: t  + T + 1  
RoI pos 

encoding
RoI feat
maps

pos-encoded
det feats

pos-encoded
traj feats

1 0

0 1

t raj #1

traj #2

det #1

det #2
Transform

er 
D

ecoder

t raj-det 
associat ion matr ix

frame t+1

frame t+T

(a)

... ...

sem-masked
pos-encoded 

feats

RoI-sem
map

(b)

Figure 2: A deeper look at the component in our method. (a): how we generate the feature
representations for both trajectories and single-frame objects. The representation of a tra-
jectory is the accumulated positional encoding of all contained historical locations and the
appearance feature of the last snapshot of the object. (b): for the video tracking and segmen-
tation task, we use the semantic occupancy map onto object RoI to obtain more fine-grained
RoI features where both position and semantics are encoded.

will demonstrate that our proposed DST encoding can solve this problem to provide a better
structure of location information in representing object trajectories.

Encoding of single-frame locations. Given the channel number of feature maps is C, for
a pixel at position (x,y) in the image (or feature maps) whose size is W ×H, its positional
encoding value at the i-th channel is

P(x,y, i) =

{
−cos

[
( x

W + y
WH )π + 2iπ

C
]
, i = 2k+1

cos
[
( y

H + x
WH )π + 2iπ

C
]
, i = 2k

k ∈ Z∩ [0,
C
2
). (1)

Such an encoding has a few desirable properties. First, it injectively maps from the
pixel position to a value on all channels of the feature maps. Second, it keeps the encoding
zero-centered spanning the image area which is friendly to the model training. Finally, the
term 2iπ

C keeps the encoding fairly sensitive to location variance within the whole area of the
image. Without this term, the encoding value changes more sensitively around the image
center while less sensitively near the image boundary. This is easy to prove by checking the
first derivative of the sinusoidal function.

What we use in the final DST encoding is the resized encoding from the RoI area of
objects only. This helps the model to have an encoding of the fixed shape and focus on the
object area. If the shape of RoI is WR ×HR and the bounding box coordinates of an object
on the raw image is (u,v,u+w,v+ h), on the cropped and resized RoI feature maps, the
positional encoding becomes

PR(x′,y′, i) =

−cos
[
( w

WWR
x′+ h

WHHR
y′)π +( u

W + v
WH )π + 2iπ

C

]
, i = 2k+1

cos
[
( h

HHR
y′+ w

WHWR
x′)π +( v

H + u
WH )π + 2iπ

C

]
, i = 2k

k ∈ Z∩ [0,
C
2
), (2)
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where x′ ∈ [0,WR] and y′ ∈ [0,HR], only now extending in the boundary box area. Here,
the period of this encoding function changes in terms of the ratio of object size and RoI
size. Therefore, this operation also implicitly encodes the target shapes instead of just the
position.

Encoding of trajectory. On two time steps t1 and t2, we note the bounding boxes of a
target object as b1 = (u1,v1,u1 +w1,v1 + h1) and b2 = (u2,v2,u2 +w2,v2 + h2). Now, by
adding the positional encoding in the RoI area, we have the trajectory encoding of every
pixel in the two bounding boxes as

Pb2|b1
R (x′,y′, i) = Pb1

R (x′,y′, i)+Pb2
R (x′,y′, i). (3)

Because the period of function Pb2|b1
R is still longer than WR and HR on the direction of width

and height, it can still represent the trajectory from b1 to b2 injectively. Furthermore, we can
extend this trajectory encoding to longer video clips as

PbT |...|b1
R (x′,y′, i) =

T

∑
t=1

αtP
bt
R (x′,y′, i), (4)

where αt is the weighting factor on the t-th frame. As for each frame, we have the dense
position encoding on each pixel in the object area in the form of trigonometric functions;
the trajectory encoding is well represented in a Fourier series now. We choose a linear
combination of frame-wise encoding to take advantage of the linearity of Fourier series that
is F(∑K

i=1 σi fi) = ∑
K
i=1 σiF( fi), where F is the Fourier transform and σi is the weighting

factor for function fi. This property ensures the sanity to extend trajectory encoding by
linearly adding the position encoding on the new coming frame. To show this, we note
T bT |...|b1 the underlying function that we aim to approximate to represent a trajectory along
the bounding boxes (b1, ...,bT ). Then, if we have a function L that maintains the linearity,
we have F(T bT |...|b1) =L(PbT |...|b1

R ). Therefore, extending the trajectory to the next position
bT+1 keeps the form of the positional encoding for the trajectory the same:

L(PbT+1|bT |...|b1
R )=L(PbT |...|b1

R )+L(PbT+1
R )=F(T bT |...|b1)+F(T bT+1)=F(T bT+1|bT |...|b1).

(5)
Now, we have shown that the proposed DST encoding can preserve the position informa-

tion in a spatio-temporal occupancy tube densely and at arbitrary length. On each encoding
channel, the value is variant to both the absolute position of the corresponding pixel and the
position difference across frames. On the other hand, the traditional positional encoding in
the transformer maintains the same encoding for any tokens of the same position difference.
Also, since the full period (2π) spans on the feature channel dimension (C), it can always
map the same relative position shift of two pixels to the same value on different channels.
In practice, we use an MLP without non-linear activation to model the function L along the
dimension of encoding channels. If a target moves smoothly along the width and height
directions, the encoding of its previous trajectory and its encoding on a new-coming frame
will output a high similarity by attention.

Compared to the classic vector positional encoding, DST encoding has three main advan-
tages: (1) preserving the object location information; (2) encoding pixel-wise dense infor-
mation; (3) unifying representation for single-frame objects and trajectories across multiple
frames. These properties provide additional knowledge to associate targets across frames.
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3.3 Dense Spatio-Temporal Attention
As both visual features and location encoding are dense on every pixel, we can do the as-
sociation in a pixel-wise dense fashion now. But in fact, the target objects often change
their pose in the bounding box and the bounding box includes background area as noise,
especially when the targets are non-rigid such as the human body in pedestrian tracking. But
when the video frame rate is high, the relative movement of the object body inside the bound-
ing box is minor, dense attention is still very useful. Moreover, we perform attention to the
RoI elements instead of the raw image pixels. Each pixel in RoI is already a conclusion of
multiple pixels on the raw images. It makes dense attention more robust. For the association
of detections in a video clip, the features already integrated with positional encodings are
noted as F ∈ RN×C×HR×WR for N objects. Then, we apply attention mask M ∈ RN×HR×WR

determining which “pixel” in the RoI areas should be attended to. In practice, the attention
mask M can be the segmentation mask (Figure 2b) if that is available or an attention map
without using segmentation supervision. We copy the feature along the channel dimension
to scale it to M′ ∈ RN×C×HR×WR . Next, we apply an MLP to transform the features into 1-d
feature vectors, the operation noted as g(·). Given all the preparation, we get the encoded
feature vector as g(M′F), which would later be transformed to K and Q by linear layers
in self-attention. Finally, we predict the attention matrix as S = softmax(Q×KT

√
D

). This also
works in the case of cross-attention for associating trajectories and detections. For a trajec-
tory, M is the attention mask on its last frame. We will apply Hungarians algorithm to ensure
the validity of the final binary association matrix from the attention matrix.

3.4 Training and Inference
Training. During training, we draw N high-confidence detections from a detector after
NMS, noted as D = {D1, ...,DN}. The features with positional encoding added are noted
as {F1, ...,FN}. From the self-attention-based association of objects within the video clip,
we can output its association matrix as Ŝ ∈ RN×N . With the ground truth association matrix
S ∈ RN×N , we can derive the MSE loss for in-clip object association as

lclip(S, Ŝ) =
1

N2 ∑
i, j
(Si, j − Ŝi, j)

2. (6)

In addition to this, we can train the association in the detection-trajectory pairs. Similarly,
in the video clip we draw, we have ground truth trajectories as T = {τ1, ...,τk}. Then, for
each frame t, we would remove the footage on and after this frame from these trajectories. It
results in a new set on each frame as T t = { /0}

⋃
{τ t

1, ...,τ
t
kt} where /0 is an empty trajectory.

At the same time, we note the detections on the frame t as Dt = {Dt
1, ...,D

t
mt}. We then

output the detection-trajectory association matrix by the introduced cross-attention. With
the ground association matrix noted as St and the estimated association matrix from softmax
as Ŝt . The loss is formulated by logistic as

ldet_tra j(D,T ) =−
N

∑
t=1

∑
τt

i ∈T t

mt

∑
j=1

St(Dt
j,τ

t
i )log(Ŝt(Dt

j,τ
t
i )), (7)

where an object can also be associated with an “empty trajectory” which means it has no
corresponding existence on other frames. Finally the overall association loss is the combi-
nation of these two terms as lasso = lclip + ldet_tra j. For the localization stage, we can use
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Table 1: Results on MOTS20 test set. We include only single-model methods here.
Method sMOTSA ↑ IDF1↑ MOTSA ↑ FP ↓ FN ↓ ID Sw. ↓ Frag ↓

Track R-CNN [25] 40.6 42.4 55.2 1,261 12,641 567 868
TraDes [29] 50.8 58.7 65.5 1,474 9,169 492 -
TrackFormer [12] 54.9 63.6 - 2,233 7,195 278 -
SORTS [1] 55.0 57.3 68.3 1,076 8,598 552 577
Ours 60.0 68.3 71.7 634 8,229 275 714

a pretrained detection or segmentation model and freeze it or train it at the same time as
training the association module.

Inference. During inference, we use an 1-stride sliding window to move from the first
video clip of length T to the last. In the first clip, we use the association of detections to ini-
tialize trajectories. Then, for the following steps, we do detection-trajectory and detection-
detection associations at the same time. Then we use their average likelihood of association
to determine the final association matrix between new-coming detections and existing trajec-
tories. Because only one frame is new at each step of the window sliding, it is averaging the
score of associating detections on the T -th frame and previous T −1 frames. The later ones
have been assigned to a trajectory already. If the average association score is lower than 0.3,
we start a new trajectory from the detection. In this process, we use the Hungarians algorithm
to ensure the validity of the association matrix between detections and trajectories.

4 Experiments

4.1 Setup
Datasets and metrics. We choose two MOT datasets (MOT17 [13] and Dancetrack [20])
and a MOTS dataset (MOTS20 [25]) as the experiment platforms. For evaluation, we use
HOTA [11] as the main metric, as it has a reasonable balance between localization and
association quality and evaluates association quality at a trajectory level. We also emphasize
AssA as it purely measures the video-level association quality. However, on the MOTS20
test set, the HOTA evaluation protocol is not reported. So we also take IDF1 as a secondary
metric to compare the quality of the association. But we still note that IDF1 is calculated at a
single-frame level and cannot accurately measure the quality of association at a video level.

Implementation. We use ResNet-50 [8] as the backbone network and BiFPN [21] for
upsampling of feature maps. We use RoIAlign [9] to extract RoI of size 7× 7. For a fair
comparison, we follow CenterNet [38] for detection and keep it as-is from the pretraining
on CrowdHuman [18]. For training, the image size is 1280× 1280 and we use T = 16 to
draw video clips. We use AdamW [10] optimizer to finetune the association module for
12K (MOT17, MOTS20) or 20K (Dancetrack) iterations with the starting learning rate of
1e-3. For segmentation, we adopt the MaskRCNN head [9] upon detection and train the
head with an additional mask-rcnn loss added to the association loss. We adopt two “linear-
ReLU” layers to project the features in the transformer. As for the evaluation of MOTS,
each pixel is allowed to be assigned to at most one object; we exclusively assign pixels to at
most one object per their confidence scores on MOTS20. Our implementation is based on
Detectron2 [30]. We also refer to mmtracking [6] for the implementation details.
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4.2 Benchmark Results
On the MOTS20 test set (Table 1), we evaluate IDF1 as the main metric. Our results show
that the proposed method can consistently outperform existing single-model methods. In ad-
dition to MOTS, we also benchmark our method on MOT benchmarks of MOT17 (Table 2)
and DanceTrack (Table 3). On the MOT17 test set, among transformer-based methods, our
proposed method obtains the highest HOTA and AssA scores, showing its superior associ-
ation performance. Moreover, compared to GTR [40], which uses the same detection net-
work as ours but no position information during association, we could see the source of our
method’s outperforming is the use of spatio-temporal position encoding. On the DanceTrack
test set, our method also achieves the highest HOTA and AssA scores among transformer-
based methods.

Table 2: Results on MOT17 test set. Best results among transformer methods are underlined.
Tracker Transformer HOTA ↑ AssA ↑ MOTA↑ IDF1 ↑ ID Sw. ↓ FP ↓ FN ↓

FairMOT [35] 59.3 58.0 73.7 72.3 3,303 27,507 117,477
PermaTrack [23] 55.5 53.1 73.8 68.9 3,699 28,998 115,104
TraDes [29] 52.7 50.8 69.1 63.9 3,555 20,892 150,060
TubeTK [14] 48.0 45.1 63.0 58.6 4,137 27,060 177,483
ByteTrack [34] 63.1 62.0 80.3 77.3 2,196 25,491 83,721
OC-SORT [4] 63.2 63.4 78.0 77.5 1,950 15,129 107,055
TransTrk[19] ✓ 54.1 47.9 75.2 63.5 4,614 50,157 86,442
TransCenter [32] ✓ 54.5 49.7 73.2 62.2 3,663 23,112 123,738
TrackFormer [12] ✓ - - 65.0 63.9 3,258 70,443 123,552
MOTR [33] ✓ - - 67.4 67.0 1,992 32,355 149,400
GTR [40] ✓ 59.1 61.6 75.3 71.5 2,859 26,793 109,854
MeMOT [3] ✓ 56.9 55.2 72.5 69.0 2,724 37,221 115,248
Ours ✓ 60.1 62.1 75.2 72.3 2,729 24,227 109,912

Table 3: Results on DanceTrack test set. Best transformer-based results are underlined.
Tracker Transformer HOTA ↑ DetA ↑ AssA ↑ MOTA↑ IDF1 ↑

CenterTrack [39] 41.8 78.1 22.6 86.8 35.7
FairMOT [35] 39.7 66.7 23.8 82.2 40.8
SORT [2] + YOLOX [7] 47.9 72.0 31.2 91.8 50.8
DeepSORT [28] + YOLOX [7] 45.6 71.0 29.7 87.8 47.9
ByteTrack [34] + YOLOX [7] 47.3 71.6 31.4 89.5 52.5
OC-SORT [4] + YOLOX [7] 55.1 80.3 38.0 89.4 54.2
TransTrk[19] ✓ 45.5 75.9 27.5 88.4 45.2
MOTR [33] ✓ 48.4 71.8 32.7 79.2 46.1
GTR [40] ✓ 48.0 72.5 31.9 84.7 50.3
Ours ✓ 51.9 72.3 34.6 84.9 51.0

Our results on diverse datasets have shown the effectiveness of our proposed method
compared to other transformer-based methods. We believe that emphasizing position in-
formation during attention and association allows the DST position encoding to outperform
other methods. We will continue to further prove this through an ablation study.

4.3 Ablation Study
Some design choices may contribute to the performance of our proposed method. To fully
validate these choices, we need segmentation annotation, but the MOTS20 evaluation server
has strict access restrictions, so we have to follow the common practice [39] on MOT17 [13]
to split each video in MOTS20 with the first half for training and the later half for validation
in the ablation study.
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To have a deeper understanding of the proposed method, the first to come is the role of
DST position encoding. To verify its effectiveness, we compare it with the same architecture
but without positional encoding or using classic vector positional encoding [24] in Table 4.
The results clearly suggest the effectiveness of our proposed DST position encoding. More-
over, the classic positional encoding hurts the association performance, which is aligned with
the observations by Zhou et al. [40].

Furthermore, we compare the performance with and without the attention mask from
segmentation on MOTS20-val. The results are reported in Table 5. It also shows the clear
advantage of using such a mask when gathering and processing the features. It agrees with
the intuition that such a mask eliminates the noise from the background and potential sec-
ondary subjects in bounding boxes from the representation features.

Table 4: The ablation study of positional encoding on MOTS20-val.
pos-encode HOTA ↑ IDF1 ↑ DetA ↑ AssA ↑ sMOTA↑ MOTSA ↑ ID Sw.↓

w/o pos-encoding 64.4 72.5 72.5 58.0 71.6 82.8 150
classic pos-encoding [24] 64.1 72.5 69.7 59.3 67.8 79.6 162
DST pos-encoding 67.1 74.9 72.8 62.3 71.7 83.0 135

Table 5: The ablation study of attention mask on MOTS20-val.
HOTA ↑ IDF1 ↑ DetA ↑ AssA ↑ sMOTA ↑ MOTSA ↑ ID Sw. ↓

w/o mask 64.6 71.3 72.5 58.1 71.3 82.6 156
w/ mask 67.1 74.9 72.8 62.3 71.7 83.0 135

The ablation studies demonstrate the effectiveness of the proposed DST position en-
coding as the main contribution of this work. Also, the attention mask to more accurately
conclude the representation of objects is proven useful when necessary mask information
is given. We note that without a segmentation mask, we can use a pretrained segmentation
model or a saliency detection model to generate such masks. But this would introduce an
unfair advantage, so we decide not to include it on the benchmark of MOT datasets.

5 Conclusion
In this work, we propose a novel dense spatio-temporal (DST) position encoding to incorpo-
rate target position information into the transformer for multi-object tracking. DST encoding
leverages the property of Fourier transform to make a uniform form of position representa-
tion for both single-frame objects and trajectories across multiple frames. It shows good
effectiveness in the task of multi-object tracking. While multiple previous works have failed
in boosting performance with classic positional encoding, our work provides a novel and
efficient paradigm for future works to do object tracking beyond just appearance matching.
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