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Abstract

Class-agnostic counting has recently emerged as a more practical counting task,
which aims to predict the number and distribution of any exemplar objects, instead of
counting specific categories like pedestrians or cars. However, recent methods are de-
veloped by designing suitable similarity matching rules between exemplars and query
images, but ignoring the robustness of extracted features. To address this issue, we pro-
pose a scale-prior deformable convolution by integrating exemplars’ information, e.g.,
scale, into the counting network backbone. As a result, the proposed counting network
can extract semantic features of objects similar to the given exemplars and effectively
filter irrelevant backgrounds. Besides, we find that traditional L2 and generalized loss
are not suitable for class-agnostic counting due to the variety of object scales in different
samples. Here we propose a scale-sensitive generalized loss to tackle this problem. It
can adjust the cost function formulation according to the given exemplars, making the
difference between prediction and ground truth more prominent. Extensive experiments
show that our model obtains remarkable improvement and achieves state-of-the-art per-
formance on a public class-agnostic counting benchmark. the source code is available at
https://github.com/Elin24/SPDCN-CAC.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

https://github.com/Elin24/SPDCN-CAC


2 LIN, CHAN: SPDCN FOR CAC

1 Introduction

In recent years, remarkable progress has been achieved in counting tasks. However, most
methods only work in a category-specific manner, like counting crowd [34] or vehicles [20],
and thus they fail to meet the requirements of some real-world applications. For exam-
ple, there exist demands for counting goods in various categories in supermarkets or ware-
houses [7]; in agriculture, predicting the crop yield of different fruits/vegetables is required [14,
37]; and some may want to know the number of different trees [3, 21]. However, with tra-
ditional counting methods, a separate counting model is needed for each object class, which
limits its practical applications.

To tackle the above problem, this paper considers class-agnostic counting, in which
counting models predict the number and distribution of objects indicated by a few object
exemplars in a set of query images. During training, both images and exemplars are input
to the counting model, and then the loss is calculated between the predicted density maps
and human-annotated dot maps [23]. Although existing class-agnostic counting methods
have achieved good performance, there is still much room for improvement. For example,
GMN [16] resizes the given exemplars to a fixed size and then calculates the distance be-
tween the exemplar’s feature and local regions of the query image to localize the object of
interest. One problem in this process is that exemplar features will lose the scale informa-
tion provided by the exemplar’s size. Although BMNet [26] adds a scale embedding to its
network to tackle this problem, its function is not intuitive.

To take advantage of scale information, we design a Scale-Prior Deformable Convolu-
tion Network (SPDCN) to extract features of objects with specific size. SPDCN embeds
the scale information into the deformable convolution, so that its receptive field is adjusted
automatically and extracts features corresponding to the scale of the given exemplars. This
design significantly boosts the counting performance because objects in the same category
typically have similar scale in an image, whereas different object categories may have vastly
different scales. With the extracted features, SPDCN then computes the similarity between
exemplars and query images to segment out regions containing the counted objects. After
that, the generated similarity map and features are sent to a decoder to estimate the density
map.

We apply the generalized loss [31] to train SPDCN. However, we find that the vanilla
generalized loss is unsuitable for class-agnostic counting because its cost function assumes
all objects (people) are the same size, whereas in class-agnostic counting, different object
categories have different scales. To tackle this problem, we propose a scale-sensitive gen-
eralized loss, in which the cost function is adjusted adaptively based on the object scale.
Experiments show that the performance is further improved with our adaptive loss function.

To summarize, the key contributions of this paper are:

• To address class-agnostic counting, we propose a scale-prior deformable network to
better extract exemplar-related features, followed by a segmentation-then-counting
stage to count objects.

• We propose a scale-sensitive generalized loss to make the model training adaptive
to objects of different sizes, boosting the performance and generalization of trained
models.

• Extensive experiments and visualizations demonstrate these two designs work well,
and outstanding performance is obtained when our model is tested on benchmarks.

Citation
Citation
{Wang, Gao, Lin, and Li} 2020{}

Citation
Citation
{Mundhenk, Konjevod, Sakla, and Boakye} 2016

Citation
Citation
{Goldman, Herzig, Eisenschtat, Goldberger, and Hassner} 2019

Citation
Citation
{Kitano, Mendes, Geus, Oliveira, and Souza} 2019

Citation
Citation
{Zabawa, Kicherer, Klingbeil, T{ö}pfer, Kuhlmann, and Roscher} 2020

Citation
Citation
{Djerriri, Ghabi, Karoui, and Adjoudj} 2018

Citation
Citation
{Osco, deprotect unhbox voidb@x protect penalty @M  {}Arruda, Junior, daprotect unhbox voidb@x protect penalty @M  {}Silva, Ramos, Moryia, Imai, Pereira, Creste, Matsubara, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Ranjan, Sharma, Nguyen, and Hoai} 2021

Citation
Citation
{Lu, Xie, and Zisserman} 2018

Citation
Citation
{Shi, Lu, Feng, Liu, and Cao} 2022

Citation
Citation
{Wan, Liu, and Chan} 2021



LIN, CHAN: SPDCN FOR CAC 3

2 Related Works

Class-Agnostic Counting. Previous counting tasks mainly aim at counting objects in a
specific category. The most popular task is crowd counting [17, 19, 29, 31, 32, 34, 35].
Vehicle [11, 20], cell [8, 9] and animal [24] counting also attract researchers’ attention, and
are applied in various aspects like vehicular management [33], medical research [4], wildlife
conservation [1], and so on. However, only a few methods have considered class-agnostic ob-
ject counting, and relevant datasets are rare. FamNet [23] defines class-agnostic counting as
predicting the number of given objects represented by only a few exemplars in the same im-
age and constructs the first dataset called FSC-147 [23]. Its baseline model is designed based
on self-similarities matching [25]. One problem is that the scale of exemplars is modeled by
the kernel size, which is normally too large to compute, so FamNet freezes the parameters
in the extractor to overcome this problem. Another similar work is the generic matching
network (GMN) [16], which encodes the semantic feature of exemplars to an embedding,
and then uses a matching network to model the relation between the exemplar embedding
and the image’s feature maps. However, GMN does not consider the scale problem because
the size of the embedding vector is fixed. BMNet [26] considers the scale problem and adds
scale embedding into its model, but it is not intuitive. Compared with these previous works,
our proposed SPDCN embeds scale information into the deformable convolution so that the
extracted feature can match the exemplar more accurately, yielding improved performance.

Deformable Convolution. Deformable convolution [2, 38] was proposed for modeling
geometric transformations dynamically, and has been applied to video super-resolution [30],
font generation [36] and other computer vision tasks. Compared to the previous works, we
introduce scale-prior deformable convolution to class-agnostic counting, where the receptive
fields of the counting network are adjusted according to the given exemplars.

Generalized Loss. The generalized loss [31] is designed based on the unbalanced opti-
mal transport (UOT) problem. [31] prove that both L2 loss and Bayesian loss [18] are special
cases of the generalized loss. In contrast to [31], which uses a fixed cost function assuming
all objects are similar sizes, we propose a scale-sensitive generalized loss for class-agnostic
counting, where different object categories have different sizes. Experimental results show
that class-agnostic counting models perform better with the scale-sensitive generalized loss,
compared to the original version.

3 Approach

3.1 Network Architecture

To solve the problem of class-agnostic counting, we design architecture different from pre-
vious works [16, 23], which is illustrated in Figure 1. Our architecture contains three key
components: (1) scale-prior backbone; (2) counted objects segmentation module (orange
part); and (3) class-agnostic density prediction module (blue part).

The scale-prior backbone is modified from an ImageNet pre-trained VGG-19 network
[28] due to its strong representation ability to extract counting features from images. We
keep the first ten convolutional layers of VGG-19 with three pooling layers. Feature maps
output by the backbone are denoted as F ∈RC×H×W , where C is the number of channels, and
H×W is the spatial size. In the backbone, some specific layers are converted to scale-prior
deformable convolutions, to utilize the crucial scale information provided by exemplars,
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Figure 1: The overall architecture of the proposed SPDCN. Images with different exem-
plars are inputted into the model. Semantic features are firstly extracted by the scale-prior
deformable backbone (details on right side), and then split into two branches, segmenta-
tion (orange boxes) and density estimation (blue boxes). The similarity map are obtained
through the cosine similarity function. It is used to segment out the foreground of density
feature maps, which is then passed to the density decoder to predict the density map.

which will be introduced in the next part. Afterward, the extracted feature map F is encoded
as Fc and Fd by two linear functions to represent segmentation and density information,
respectively.

In the segmentation branch, an ROIAlign layer [10] is applied to extract semantic vectors
{v1, · · · ,vn} (n ≤ 3 is the number of labeled exemplars) according to given box coordinates
to represent each exemplar. Next, a class-specific representation vector v̄ is obtained by
averaging these vectors, and the cosine similarity s̃i between v̄ and each local feature vector
fi of the whole feature map Fc is calculated:

s̃i =
v̄> fi

‖v̄‖2 · ‖ fi‖2
, fi ∈ Fc, v̄ =

1
n

n

∑
j

v j. (1)

The predicted similarity map S̃ indicates which regions are foreground or background is
constructed by arranging the s̃i in spatial order.

The density prediction module uses the similarity results to highlight these regions con-
taining counted objects. In this branch, element-wise multiplication is adopted between Fd
and S̃ to generate the class-agnostic density feature, which is then inputted to the final de-
coder module. Our decoder follows the design of PSCC [35], which uses pixel-shuffling [27]
to upsample the feature map, and produces the final density map D̃ with the same size as in-
put images. More details are presented in the supplemental.

It should be noted that our SPDCN is different from previous works [12] that adopt a
human head segmentation mask as attention to refine density map results. In our case, we
obtain a similarity map under the guidance of exemplar object features, and the similarity
map S̃ is used to generate a class-agnostic density feature.

3.2 Scale-Prior Deformable Convolution
Previous exemplar-guided class-agnostic counting methods like GMN [16] usually ignore
the scale information. In FamNet [23], exemplars are directly used as convolution kernels
so that the scale information is reflected by the kernel size. To take advantage of size infor-
mation provided by exemplars, here we propose scale-prior deformable convolution to filter
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features that are not consistent with given scales and only extract helpful features for class-
agnostic counting. Specifically, we use the given exemplars’ scales to learn the correspond-
ing scale embeddings, and then adjust the receptive fields of the deformable convolutions
according to these embedding vectors.

For a convolution kernel w with size of 2r+1, the output value y(p) while convolving it
with input feature map x at location p is calculated as:

y(p) = ∑
j∈R

w( j) ·x(p+ j), R= {(−r,−r),(−r,−r+1), · · · ,(r,r−1),(r,r)}. (2)

Different from normal convolution, deformable convolution [2] adds learnable offsets ∆ j to
j and (2) becomes:

y(p) = ∑
j∈R

w( j) ·x(p+ j+∆ j). (3)

In (3), traditionally ∆ j is directly learned by mapping x into an offset tensor [2]. However,
exemplars’ scales (width and height) are provided in class-agnostic counting. Instead of
learning offsets ∆ j from the input feature map, we believe that the exemplar is a better
source to get the offset of the deformable convolution. According to this idea, the offsets of
our scale-prior deformable convolution are made up of two parts, the local scale embedding
dc and the global scale embedding dg.

The local embedding dc is similar to the vanilla deformable convolution [2], which only
utilizes the preceding feature maps to learn offsets locally. In other words, dc = C(x) is
obtained by applying a non-linear convolutional block C to the previous image feature maps
x. The global scale embedding dg is obtained from the exemplars’ scale, and is the same for
the whole feature map. Specifically, dg is represented by mapping the average width w̄ and
height h̄ of the exemplars to a vector:

dg = G(h̄, w̄), h̄ = ∑
ei∈EI

hei

|EI |
, w̄ = ∑

ei∈EI

wei

|EI |
, (4)

where EI is the exemplar set, hei and wei is the height and width of the i-th exemplar ei.
Similar to C, G is a non-linear function transferring a two-dimensional vector to the global
scale embedding dg. Notably, dg is only related to the size of examples but unrelated to its
semantic information. Since dg is a single vector, it should be expanded along the spatial
dimensions to make it the same size as dc. Afterwards, they are concatenated and another
non-linear convolutional block R is applied to obtain offsets for deformable convolutions.
The whole process is displayed in the right part of Figure 1.

Guided by the scale prior, the deformable convolution is able to adjust its receptive fields
accordingly, which plays a positive role in extracting an exemplar-related representation. In
this work, the last convolution layers in all four stages of VGG-19 [28] are replaced with
scale-prior deformable convolutions.

3.3 Scale-Sensitive Generalized Loss
In object-specific counting, the ground truth is generated by convolving the labeled dot map
with a Gaussian kernel, and typically the L2 loss is used to measure the quality of the pre-
dicted density map. Recently, Generalized loss [31] directly measures the distance between
the predicted density map and dot map through an unbalanced optimal transport problem,
and shows that L2 loss with Gaussian-blurred ground truth is a special case. The distance
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(cost) function in generalized loss reflects the Gaussian kernel size in L2 loss, and both are
fixed in object-specific counting. However, in exemplar-guided class-agnostic counting, we
can adjust the cost function according to the given exemplars. Inspired by this, we present
scale-sensitive generalized loss for improving the training of class-agnostic counting models.

Specifically, the generalized loss is formulated as:

LC = min
P
〈C,P〉− εH(P)+ τ‖P1m−a‖2

2 + τ‖P>1n−b‖1, (5)

where a is the predicted density map, b = 1m plays the role of the target, H(·) is the entropic
regularization term, P is the corresponding unbalanced optimal transport plan, and C is the
cost matrix that defined by the euclidean distance between each pixel in the density map and
ground truth. To add the scale information of the counted objects, we define the cost matrix
as:

Ci j = ‖x̂i− ŷ j‖2,
[
x̂i ŷ j

]
=

[
1/sh 0

0 1/sw

][
xi y j

]
, (6)

in which xi is the 2-d coordinate of the i-th pixel in the predicted density map, yi is the 2-d
coordinate of the j-th labeled point in the ground truth. sh and sw are scale factors that align
the two axes. To avoid extreme value, we take a modified sigmoid function S(·) to limit the
range of these two factors:

S(k) = α

1+ exp(−(k−µ)/σ)
+β , (7)

and then define sh =S(h̄) and sw =S(w̄), where h̄ and w̄ are the average of exemplars’ height
and width, as in (4). Here µ defines the symcenter of the S-curve; σ is used to smooth the
curve; α and β control the range and minimum value of output. These four hyperparameters
should be set accordingly before training.

4 Experiments

4.1 Dataset & Evaluation Metrics & Implementation Details
The dataset for class-agnostic counting FSC-147 is introduced by FamNet [23], in which it
is proposed for a few-shot counting task. The dataset contains 147 object categories. The
whole dataset is split into train, validation, and test sets, and each set does not share any
object category with other sets. Thus, the objects in the test set are not seen during the
training process, which is also the reason why it is regarded as few-shot counting.

Besides FSC-147, a car counting dataset CARPK [11] is also used to explore whether
a model counting general objects can be applied to counting objects in a specific category.
There are 989 training and 459 test images, with a total of 89,777 cars. All images are
collected with drones from 4 different parking lots.

The counting task is evaluated using Mean Absolute Error (MAE) and root Mean Squared
Error (MSE):

MAE =
1
N

N

∑
i=1
|Ci−C̃i| ; MSE =

√
1
N

N

∑
i=1
|Ci−C̃i|2, (8)

where N donates the number of samples in the test dataset, and Ci and C̃i are the predicted
count number and ground truth of the i-th sample, respectively.
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Methods Validation Set Test Set
MAE MSE MAE MSE

FR FSD [13] ICCV’19 45.45 112.53 41.64 141.04
FSOD FSD [5] CVPR’20 36.36 115.00 32.53 140.65
MAML [6] PRML’17 25.54 79.44 24.90 112.68
GMN [16] ACCV’18 29.66 89.81 26.52 124.57
FamNet [23] CVPR’21 23.75 69.07 22.08 99.54
VCN [22] CVPRW’22 19.38 60.15 18.17 95.60
BMNet [26] CVPR’22 15.74 58.53 14.62 91.83
SPDCN (ours) 15.55 51.00 14.48 100.01
SPDCN† (ours) 14.59 49.97 13.51 96.80

Table 1: Comparison with state of the arts. † indicates training with our scale-sensitive
generalized loss.

Ground Truth: 33 FamNet: 78.08

BMNet: 49.13 SPDCN: 35.27

Ground Truth: 292 FamNet: 387

BMNet: 243 SPDCN: 294

Ground Truth: 42 FamNet: 27.79

BMNet: 82.03 SPDCN: 47.60

Figure 2: Visualization of density maps predicted by SPDCN and some baselines on FSC-
147 dataset. The proposed SPDCN can estimate more sophisticated density maps than other
models.

For efficient training, we pad images having lower resolutions with zeros, and resize
images having higher resolutions, in order to keep the sizes of all samples the same at 576×
384. During training, we set the batch size to 16. AdamW [15] optimizer is adopted with
a learning rate of 5e-5. All models are trained for 50 epochs, and the learning rate decays
with a rate of 0.95 after each epoch. C and R in the scale-prior deformable convolution are
two layers of convolutions with the ReLU active function. G is constructed by two fully
connected layers. Empirically, α , β , µ and σ are set to 256, 128, 64 and 32, respectively.

4.2 Comparison With State-of-the-Arts
We first compare our method with state-of-the-art class-agnostic models on the FSC-147
dataset. As shown in Table 1, few-shot detection based methods like FR [13] and FSOD [5]
cannot detect all objects accurately, achieving MAE larger than 30. Compared with them,
the meta-learning method MAML [6] obtains MAE of 25.54. Self-similarity-based methods
like GMN [16] and FamNet [23] perform better and obtain MAEs of 26.52 and 22.08 respec-
tively. VCN [22] addresses the scarcity of annotated data by using a generator to produce
augmented images, and then a counting network predicts the original and augmented image
for better generalization. Experiments show that VCN gets a lower MAE of 18.17 than Fam-
Net. BMNet [26] adopts a dynamic similarity metric for better matching between exemplars
and query images, which decreases MAEs on the validation and test set to 15.74 and 14.62,
respectively.
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embedding validation set test set
global local MAE MSE MAE MSE

21.24 71.16 19.41 128.26
! 19.99 69.49 17.58 119.69

! 16.63 53.30 14.54 104.69
! ! 14.59 49.97 13.51 96.80

Table 2: Results of SPDCN with different de-
formable convolution types.

(a) ablation study on inserted position

M
A

E M
SE

MAE
MSE

conv.2 conv.4 conv.8 conv.12
15

16

17

18

19

50

55

60

65

70

(b) number of inserted layers

M
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E M
SE

MAE
MSE

1 2 3 4
14.5
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15.1

15.4

49

51

53

55

Figure 3: Ablation study on the position and
number of scale-prior deformable convolutions.

Normal Convolution

Vanilla Deformable Convolution

Scale-Prior Deformable Convolution

Figure 4: The receptive field comparison
among different convolutions.

However, all these models pay little attention to leveraging the scale information in ex-
emplars. In contrast, our SPDCN utilizes the scale information through the proposed scale-
prior deformable convolution in a simple matching network, and dramatically improves the
counting performance. Training with vanilla generalized loss, SPDCN achieves MAE 14.48,
which is is lower than BMNet. If scale-sensitive generalized loss is adopted (SPDCN†),
the MAE is further decreased to 13.51, demonstrating our design’s effectiveness. Figure 2
presents several examples from the FSC-147 validation set. Although these counted objects
vary in scale and quantity, our model obtains good compact predictions compared to other
models.

4.3 Ablation Study on Scale-Prior Deformable Convolution

We next present an ablation study on the scale-prior deformable convolution. We compare
the proposed method with vanilla deformable and normal convolutions, and then visualize
their receptive fields on a few examples. Furthermore, we also explore whether the position
and number of scale-prior deformable convolution layers affect the counting performance.

In Table 2, we compare the deformable convolutions with different embeddings. Normal
convolutions achieve MAE and MSE of 19.41 and 128.26, respectively. When we replace it
with vanilla deformable ones (local embedding) under the same setting shown in Figure 1,
the counting errors decrease to 17.58 and 119.69. This illustrates that vanilla deformable
convolution helps the model adjust its receptive field adaptively and improve counting per-
formance. However, the estimated scale information is inaccurate, leading to limited im-
provement. In contrast, the scale-prior version adjusts the receptive fields according to the
exact object size information provided by exemplars (global embedding), and the counting
errors are reduced to 14.54 and 104.69. Obviously, the receptive field of SPDCN with only
global embedding cannot cover all instances due to their variable scale. When combining
both, the global embedding gives coarse scale prior and the local embeddings adjust it adap-
tively, resulting in the best performance (last row in Table 2).

Figure 4 visualizes the receptive fields (red regions) of the output feature maps when
models encounter objects with different scales. In the first column, the receptive fields of
normal convolution are enough to capture the each instance (bird), so the offsets of both de-
formable convolutions are close to zero, and the receptive fields (red regions) in these three
images are similar. When the object scale increases, normal convolution keeps the same
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Figure 5: Examples of instances with (left) different scales and (right) different rotations.

receptive field. Vanilla deformable convolution is able to capture a slight change of object
scale but cannot work on objects of larger size, which means it is hard to learn scale informa-
tion of large objects. However, the scale-prior deformable convolution learns the receptive
field from both the local features as well as the scale-prior from the given exemplars, which
allows the network to capture feature of counted objects with large scale, as illustrated in the
right column.

Figure 3(a) studies in which position the scale-prior deformable convolution layer will
contribute the largest to counting performance. Putting the scale-prior layer at early layers
improves performance more than latter layers. This makes sense because high-level feature
maps have smaller resolutions than low-level ones. If the scale of objects is small, adjusting
the receptive fields of high-level layers will harm the output features. In contrast, deformable
convolution at low-level layers can cover big objects using large offsets (∆ j in (3)), and only
capture a small region for small objects. Nevertheless, replacing only the final layer with
scale-prior deformable convolution still outperforms vanilla deformable convolution (MAE:
18.74 vs. 19.99).

In Figure 3(b), we insert the scale-prior deformable convolutions to the backbone one by
one to explore the effect of the number of these layers. The error decreases gradually as more
layers are inserted. However, too many deformable layers also requires more computation
time. Thus in our model, only one scale-prior deformable convolution is placed in each stage
(totaling 4 layers) to maximize the efficiency.

One concern with SPDCN might be that the scale prior is fixed so that it might not handle
objects with various scales or rotations. Note that we only use the scale prior to adjust the
receptive field of the network – the matching process and density estimation are based on
semantic information instead of scale information. Furthermore, besides the scale prior, local
embeddings are used in the deformable convolution to dynamically adjust the receptive field
to each object’s appearance. Figure 5 visualizes two example images of objects with various
scales and rotation angles. In Figure 5(left), the scales of instances and exemplars change
dramatically, and the matching result (similarity map) highlights all instances of interest. In
Figure 5(right), instances are rotated at different angles, and our network handles the object-
rotation problem by learning rotation-invariant features for matching. Both samples show
that our SPDCN is able to work under scale-variance and rotation-variance, thus predict
counting results close to ground truth.

4.4 Ablation Study on Scale-Sensitive Generalized Loss

We next conduct an ablation study comparing the proposed scale-sensitive generalized loss
with the vanilla one, as well as the corresponding versions of L2 loss, as presented in Table 3.
For L2 loss, we use (7) to change the size of the Gaussian kernel, so that a large object also
has a large kernel. The results show that the scale-sensitive L2 loss can guide the model to
have better generalization no matter the trained model has a common backbone (MAE: 23.67
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VGG-19 L2 loss Generalized loss
vanilla scale-sensetive vanilla scale-sensetive

w/o scale-prior 23.67/72.81 22.85/70.90 21.60/71.83 21.23/70.75
w/ scale-prior 15.89/52.24 15.45/50.18 15.55/51.00 14.59/49.97

Table 3: Ablation study on scale-sensitive generalized loss (MAE/MSE).

w/o fine-tuning w/ fine-tuning
method FamNet BMNet SPDCN FamNet BMNet SPDCN
MAE 28.84 17.30 18.15 18.19 9.66 10.07
MSE 44.47 21.89 21.61 33.66 14.84 14.12

Table 4: Experimental results on CARPK dataset.

→ 22.85) or scale-prior deformable ones (MAE: 16.15→ 15.89). When generalized loss is
applied, the performance is also improved, and errors are further decreased (MAE: 15.55
→ 14.59). These experiments demonstrate that the scale-sensitive loss is more suitable for
exemplar-guided class-agnostic counting.

4.5 Test on CARPK

Following FamNet [23], we next present experimental results on CARPK [11]. To adapt
the counting everything model to the specific object counting, twelve labeled objects (cars)
are randomly selected as exemplars from the training set. As shown in Table 4, SPDCN is
compared with FamNet [23] and BMNet [26] (the results of BMNet are reproduced with
our code). Without fine-tuning, FamNet achives an MAE of 28.84, which is much worse
than BMNet (17.30) and ours SPDCN (18.15). SPDCN achieves the lowest MSE of 21.61.
After fine-tuning on the CARPK training set, all models obtain smaller errors than before.
FamNet (18.19) is close to SPDCN without fine-tuning. The MAE of BMNet and SPDCN
are decreased to 9.66 and 10.07. Our model acheives the smallest MSE of 14.12.

5 Conclusion

In this paper, we explore exemplar-guided class-agnostic counting. To take advantage of
scale information provided by exemplars, scale-prior deformable convolution is proposed
to adjust the receptive fields according to the given exemplars. Experimental results show
that this operation decreases counting errors dramatically and gives a more accurate density
distribution. We also propose scale-sensitive generalized loss to adapt the cost function
according to exemplars, so that different training samples with different object scales have
their own distance function for optimal transport. This new loss further helps our model
perform better than previous models on the class-agnostic counting benchmark.
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