

Scale-Prior Deformable Convolution for Exemplar-Guided Class-Agnostic Counting Wei Lin¹, Kunlin Yang², Xinzhu Ma³, Junyu Gao⁴, Lingbo Liu⁵, Shinan Liu², Jun Hou², Shuai Yi², Antoni B. Chan¹

Scale-Prior Deformable Convolution Network

- Previous works focus on designing self-similarity matching rules between exemplars and query images;
- > SPDCN is developed to better extract exemplar-related features;

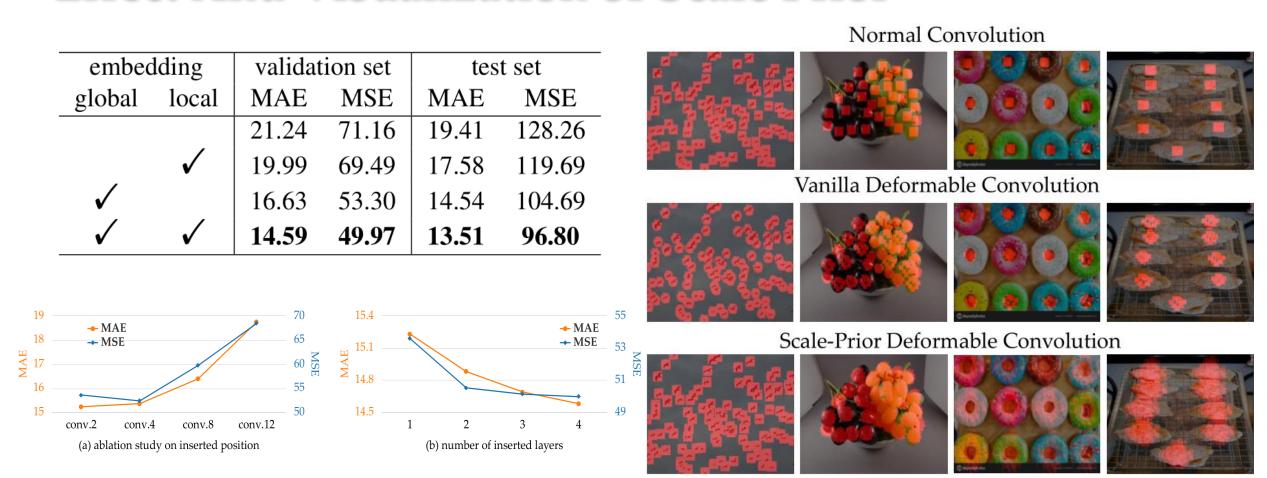
scale-prior backbone

non-linear ${\cal C}$	non-linear ${\cal G}$	
Input size: $n \times h \times w$	Input size: 2	
$\operatorname{Conv}_{3x3(n, 64)}$	Linear(2, 64)	
ReLU	ReLU	
$Conv_3x3(64, 32)$	Linear(64,32)	
<i>Output</i> d_c : $32 \times h \times w$ <i>expand to</i> d_g : $32 \times h \times w$		
non-linear \mathcal{R}		
<i>Concatenate</i> C <i>and</i> G : $64 \times h \times w$		
Conv_3x3(64,32)		
ReLU		
$Conv_3x3(32, 18)$		
<i>Output size:</i> $18 \times h \times w$		

- The offsets in vanilla deformable convolution only comes from local embedding C;
- ➢ In SPDCN, the offsets is transformed from the combination of local embedding \mathcal{C} and global embedding \mathcal{G} . A non-linear module \mathcal{R} is used to fuse them.
- The global embedding is the average height and width of given exemplars.

$$d_g = \mathcal{G}(\bar{h}, \bar{w}), \ \bar{h} = \sum_{e_i \in E_I} \frac{h_{e_i}}{|E_I|}, \bar{w} = \sum_{e_i \in E_I} \frac{w_e}{|E_I|}$$

¹City University of Hong Kong, ²SenseTime Group Limited, ³The University of Sydney, ⁴Northwestern Polytechnical University, ⁵The Hong Kong Polytechnic University


Scale-Sensitive Generalized Loss

$$\mathcal{L}_{\mathbf{C}} = \min_{\mathbf{P}} \langle \mathbf{C}, \mathbf{P} \rangle - \varepsilon H(\mathbf{P}) + \tau \| \mathbf{P} \mathbf{1}_{m} - \mathbf{a} \|_{2}^{2} + \tau \| \mathbf{P}^{\top} \mathbf{1}_{n} - \mathbf{b} \|_{1}$$
$$\mathbf{C}_{ij} = \| \hat{x}_{i} - \hat{y}_{j} \|_{2}, \quad \begin{bmatrix} \hat{x}_{i} & \hat{y}_{j} \end{bmatrix} = \begin{bmatrix} 1/s_{h} & 0 \\ 0 & 1/s_{w} \end{bmatrix} \begin{bmatrix} x_{i} & y_{j} \end{bmatrix}$$
$$s_{h} = \mathcal{S}(\bar{h})$$
$$s_{w} = \mathcal{S}(\bar{w}) \quad \mathcal{S}(k) = \frac{\alpha}{1 + \exp(-(k - \mu)/\sigma)} + \beta$$

Effect of Scale-sensitive Loss (MAE/MSE)

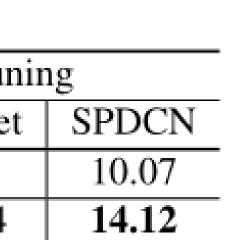
VGG-19	L	Generalized		
	vanilla	scale-sensetive	vanilla	sca
w/o scale-prior	23.67/72.81	22.85/70.90	21.60/71.83	2
w/ scale-prior	15.89/52.24	15.45/50.18	15.55/51.00	14

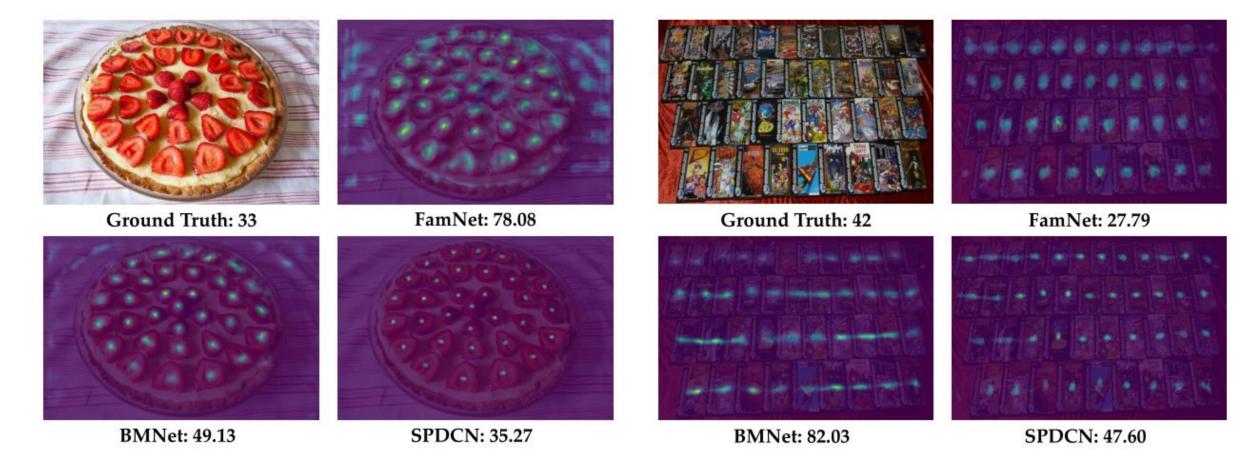
Effect And Visualization of Scale Prior

Adaption to CARPK Dataset

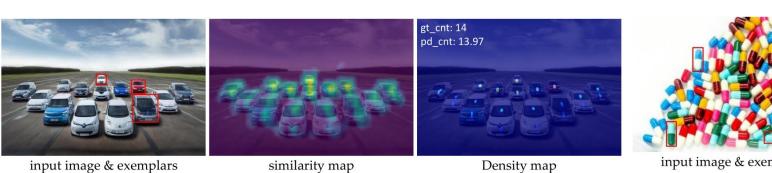
		w/o fine-tuning			w/ fine-tur		
-	method	FamNet	BMNet	SPDCN	FamNet	BMNet	
	MAE	28.84	17.30	18.15	18.19	9.66	
	MSE	44.47	21.89	21.61	33.66	14.84	

W




Comparison with State-of-the-arts on FSC-147

ed loss ale-sensetive 1.23/70.75 14.59/49.97


Methods		Validation Set		Test Set	
		MAE	MSE	MAE	MSE
FR FSD [13]	ICCV'19	45.45	112.53	41.64	141.04
FSOD FSD [5]	CVPR'20	36.36	115.00	32.53	140.65
MAML [6]	PRML'17	25.54	79.44	24.90	112.68
GMN [16]	ACCV'18	29.66	89.81	26.52	124.57
FamNet [23]	CVPR'21	23.75	69.07	22.08	99.54
VCN [22]	CVPR'22	19.38	60.15	18.17	95.60
BMNet [26]	CVPR'22	15.74	58.53	14.62	91.83
SPDCN (ours)		15.55	51.00	14.48	100.01
SPDCN [†] (ours)		14.59	49.97	13.51	96.80

Visualization of Recent Methods and Ours

Robustness to Scale Variation And Rotation

The scale prior is only used to adjust the receptive field of network. The matching process and density estimation are based on semantic information instead of scale information.

電腦科學系 Department of Computer Science

