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1 Overview
This supplementary material is organized as follows:

• In Section 2, more details about our SPDCN are presented, e.g., architecture of C, G
and R, and the stucture of density decoder, and the reason why Vgg-19 is adopted as
the architecture of backbone.

• In Section 3, we analyze how different number of exemplars affects counting results
in exemplar-guided class-agnostic counting.

• In Section 4, we present results on a subset of FSC-147 only containing categories in
COCO [2] to compare our model with detection-based methods;

• In Section 5, we discuss how these hyperparameters α , β , µ and σ in scale-sensitive
generalized loss affect the performance of SPDCN.
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non-linear C non-linear G
Input size: n×h×w Input size: 2

Conv_3x3(n,64) Linear(2,64)
ReLU ReLU

Conv_3x3(64,32) Linear(64,32)
Output dc: 32×h×w expand to dg: 32×h×w

non-linearR
Concatenate C and G: 64×h×w

Conv_3x3(64,32)
ReLU

Conv_3x3(32,18)
Output size: 18×h×w

Table 1: Details about C, G andR.

layer output feature size
input size 512× 1

8 h× 1
8 w

Conv 3x3
256× 1

8 h× 1
8 wReLU

Conv 3x3
256× 1

8 h× 1
8 wReLU

Pixel Shuffling 4×h×w
Conv 3x3 1×h×wReLU

Table 2: The structure of decoder.
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Figure 1: MAEs/MSEs of different vanilla backbones.

• In Section 6, more representative visual results are displayed to show the advantage of
our proposed SPDCN.

2 Network Details

The offsets in the scale-prior deformable convolution are generated through three non-linear
functions C, G, and R. As shown in Table 1,C is the function for local embedding dc, fol-
lowing a typical non-linear structure Conv-ReLu-Conv; G is similar to C, but Linear function
is adopted since the input only contains two elements (h̄ and w̄); R also has the architecture
of Conv-ReLU-Conv, which is designed to firstly concatenate the local embedding dc and
global embedding dg, and then generate offsets for deformable convolution. The output has
18 channels, representing the offsets aligning two axes for a 3×3 convolutional kernel.

With the output feature maps from the scale-prior deformable backbone, we segment
out regions containing counted objects by cosine similarity. After segmentation, the size of
density feature maps is 512× 1

8 h× 1
8 w, in which h and w are the height and width of the

input image. To construct the final density map D ∈ R1×h×w, the feature should be firstly
compressed and interpolated. In our model, compression is done by two convolution layers,
and the upsampling method is a pixel shuffling operator [7]. The structure of the decoder is
displayed in Table 2.

Another question is why Vgg-19 [8] is adopted as the backbone architecture. In Figure 1,
we present empirical results while various architectures are used in our models. Results show
that Vgg-19 achieves the lowest estimations errors. Notably, the scale-prior deformable con-
volution is not inserted in these backbones. We believe that the best vanilla feature extractor
can also perform better than others when the scale-prior deformable convolution is inserted.
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Exemplar number # 1 # 2 # 3
Method MAE MSE MAE MSE MAE MSE

FamNet [4] 26.55 77.01 24.09 72.37 23.75 69.07
BMNet [6] 17.89 61.12 16.03 58.65 15.74 58.53

SPDCN(ours) 16.36 53.94 15.64 51.17 14.59 49.97
Table 3: Comparison with other methods when different number of exemplars are used.

Method Validation COCO Test COCO
MAE MSE MAE MSE

Faster R-CNN [5] 52.79 172.46 36.20 79.59
RetinaNet [3] 63.57 174.36 52.67 85.86

Mask RCNN [1] 52.51 172.21 35.56 80.00
FamNet [4] 39.82 108.13 22.76 45.92
BMNet [6] 26.55 93.63 12.38 24.76

SPDCN(ours) 29.11 93.12 11.87 24.50
Table 4: Comparison to pre-trained object detectors on the COCO subset of FSC-147

3 Analysis on Exemplar Number
The number of exemplars is a significant part of class-agnostic counting, so here we present
experimental results of models trained with different numbers of exemplars.

As displayed in Table 3, estimation errors decrease gradually with the increase of the
number of exemplars. Our SPDCN can get the lowest MAE of 16.36 when given only
one exemplar, which is even better than FamNet [4] with three exemplars. When giving
two exemplars, SPDCN’s MAE(MSE) is reduced to 15.64(51.17). For comparison, BM-
Net achieves an MAE(MSE) of 16.03(58.65) under this setting. When three exemplars rae
provided, our model can utilize the new information well and obtains MAE of 14.59.

4 COCO Subset
In this section, we follow the setting of FamNet [4] and compare our model with detection-
based methods. Since thousands of samples are required to train a detector, a subset of
FSC-147 [4] only containing categories existing in COCO [2] is used to evaluate counting
models. As shown in Table 4, detection-based counters like Faster R-CNN [5], RetinaNet [3]
and Mask R-CNN [1] perform worse on counting tasks and all of them have MAEs larger
than 50 on the validation set, while density-estimating methods work better. FamNet reduces
MAE on validation-COCO and test-COCO by about 10 and 15, respectively; BMNet [6] has
MAE and MSE of 26.55 and 12.38. However, our SPDCN’s MAE on validation COCO is
larger than BMNet, but our MSE is smaller. Besides, SPDCN achieves the lowest estimation
errors on the test-COCO set (MAE: 11.87, MSE: 24.50).

5 Hyperparameters in Scale-Sensitive Generalized Loss
Scale factors in scale-sensitive generalized loss are defined by a modified sigmoid function:

S(k) = α

1+ exp[−(k−µ)/σ ]
+β , (1)
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Figure 2: Visualization of the modified sigmoid function. The shaded region will never be
used since the input k (i.e., h̄ or w̄) is always positive.

(a) median output β (α=0).
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(b) output range α (β=256-α/2).
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(c) symcenter μ.
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(d) smooth item σ.
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Figure 3: Ablation study on hyperparameters in the scale-sensitive generalized loss.

so that we have sh = S(h̄) and sw = S(w̄). There are four hyperparameters: µ , σ , α and
β . Figure 2 visualizes three examples with different σ . As shown in the figure, µ defines
the symcenter of the S-curve; σ is used to smooth the curve; α and β control the range
and minimum value of output. Here we conduct experiments by applying SPDCN to scale-
sensitive generalized loss in different settings, demonstrating how the loss function helps
exemplar-guided class-agnostic counting.

Firstly, we set α as 0 to observe the effect of β , in which case the loss function de-
generates into a vanilla generalized loss instead of the scale-sensitive one. As displayed in
Figure 3(a), MAE does not change dramatically, but MSE decreases by about 5 when β

changes from 64 to 256. Notably, β represents the upper and lower bound simultaneously
since α = 0 here.

Next, we discuss the effect of α . Here we fix µ and σ as 64 and 32. For β , we set
β = 256− α

2 to keep the median (instead of the lower bound) of output value equal to 256,
so that the range of output is [256− α

2 ,256+ α

2 ]. Figure 3(b) demonstrate how MAE and
MSE change with the increase of α , and it shows that the lowest MAE/MSE is obtained
when α = 256 and β = 128.

By fixing α and β , we explore the influence of µ and σ . In Figure 3(c), σ is set as
32, and µ changes from 32 to 256. In Figure 3(d), σ gradually increase to 128 as µ = 64.
Both figures show that neither a large or small µ/σ is harmful to counting performance. The
lowest estimation errors are given when µ and σ are set to 64 and 32, respectively. The
relationship between scale factor sw(sh) and average length of side w̄(h̄) is displayed by the
red line in Figure 2.

According to these ablation studies, we set α , β , µ and σ to 256, 128, 64 and 32,
respectively.
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6 More visualizations
Fig. 4 and Fig. 5 present more visualization results, in which we compare our SPDCN with
FamNet [4] and BMNet [6]. The corresponding segmentation masks computed by SPDCN
are also presented. These examples show that SPDCN performs better than other models,
and the prediction of our model is more accurate.
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Input BMNet: 78.6FamNet: 38.70

Segmentation Mask Ground truth: 16SPDCN: 21.72

Segmentation Mask Ground truth: 211SPDCN: 214.60

Input BMNet: 194.49FamNet: 170.78

Input BMNet: 329.03FamNet: 246.78

Segmentation Mask Ground truth: 289SPDCN: 292.52

Figure 4: More visualizations of density maps predicted by different methods. Segmentation
masks produced by SPDCN are also presented.
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Input BMNet: 19.58FamNet: 14.52

Segmentation Mask Ground truth: 12SPDCN: 11.13

Segmentation Mask Ground truth: 211SPDCN: 147.2

Input BMNet: 138.53FamNet: 174.59

Input BMNet: 129.66FamNet: 115.06

Segmentation Mask Ground truth: 101SPDCN: 95.73

Figure 5: More visualizations of density maps predicted by different methods. Segmentation
masks produced by SPDCN are also presented.


