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Abstract

The monocular 3D lane detection (Lane3D) methods are increasingly proposed to
address the issue of inaccurate bird-eye-view (BEV) results in various complex scenarios
(e.g. up and downhills, bumps). However, there are a few restrictions on existing Lane3D
methods. Primarily, only single-frame input is considered, which leads to poor results in
no visual cues scenarios (e.g. obscured by surrounding vehicles). The other is that they
rely on the camera pose to the road surface to translate to the road coordinate system.
To address these issues and better exploit the spatio-temporal continuity of the lanes, we
propose a novel Spatial-Temporal Lane3D model abbreviated as STLane3D. First, we
propose a novel multi-frame pre-alignment layer under BEV, which uniformly projects
features from different frames onto the same ROI region. Afterward, we propose a plug-
and-play spatio-temporal attention module and a new 3DLane IOULoss. Experiments on
the ONCE and OpenLane datasets demonstrate that our single-frame model, independent
of camera extrinsic, can achieve close detection accuracy compared to the current state-
of-the-art. And our multi-frame model improves the F1 score by 3.5% compared to
the single-frame model on the ONCE dataset, which demonstrates the effectiveness of
the multi-frame fusions strategy. Moreover, with multi-frame information, our model
achieves satisfying performance in complex scenes lacking enough visual information
and meets the real-time requirements on autonomous vehicles.

1 Introduction

Lane detection is a classic yet challenging computer vision task and an intuitive and effective
way for autonomous vehicles to perceive their surroundings. It is widely used in autonomous
driving scenarios (e.g. lane keeping, automatic cruise control, assisted trajectory planning),
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where it can help self-driving cars better position themselves and improve safety. Tradi-
tional 2D lane detection methods focus on obtaining the exact lane position on the image.
However, due to the lack of image depth information, the 2D results are challenging to
apply to downstream tasks directly. We have to project them back into 3D space through
inverse perspective mapping (IPM), which is under the assumption that the road surface is
flat. Moreover, vehicle bumps and uneven road surfaces will significantly affect position ac-
curacy. Monocular 3D lane detection (Lane3D) methods [3, 4, 5, 9, 10] are proposed to solve
these issues, which can obtain the lane position from the 3D world space in an end-to-end
manner without road planar assumption.

Although existing Lane3D methods have shown the ability to alleviate the weaknesses
of 2D lane detection, most of them are carried out in the road coordinate system to remedy
different camera mounting positions. The real-time pitch angle and camera height are needed
during the training process. However, in practice, getting the real-time ground truth from the
onboard sensors is challenging because the assumption of flat ground is not always satisfied.
For example, in the scene of up and downhill, the ego pose relative to the global coordinate
system is inconsistent with the road coordinate system due to the bumps of the ego car, which
will introduce additional translation errors, as is shown in Fig. 1(c). On top of that, effort in
solving the complex scenes with no visual cues (e.g. close dashed lines, lane lines obscured
by surrounding vehicles) has not been well explored, which may introduce false negatives
due to the lack of enough visual information.

Based on the above observations, we aim to provide a simple and spatio-temporal fusion-
based 3D lane detection method abbreviated as STLane3D to tackle these issues. Firstly, to
eliminate the performance drop due to the insufficient visual cues, we propose a multi-frame

fusion mechanism by making use of the strong spatio-temporal continuity in consecutive
frames instead of focusing on single frame. Specifically, we utilize a pre-alignment oper-
ation to align the space information on the different frames. Then an attention module is
introduced to fuse BEV features from different times. With this design, we can achieve a
more complete and continuous perception of the lane features. For example, some parts of
lanes are invisible in frame t � 1 or frame t due to the occlusion of surrounding vehicles in
Fig .1(a). By fusing multiple frames, the position information can be recognized in Fig .1(b),
marked by the green circles. Secondly, considering the difficulty of obtaining a precise cam-
era pose and recognizing the change of camera pose on the consecutive frames during the
multi-frame fusion, we perform 3D lane detection under the camera coordinate system.

We conduct extensive experiments on the standard ONCE and OpenLane benchmarks.
Compared to other Lane3D methods, our single-frame and multi-frame method achieve the
state-of-the-art result with an F1 score of 77.53% on ONCE and 50.55% on OpenLane. To
sum up, our main contributions are as follows:

(1) We present a novel, simple and effective Lane3D framework by incorporating both
spatial and temporal information among frames. To the best of our knowledge, it is the first
spatio-temporal 3D lane detection algorithm.

(2) We design a pre-alignment operation and plug-and-play spatio-temporal attention
module, which can fuse multi-frame features more effectively.

(3) We propose 3DLane IOULoss, which constrains the lateral and vertical variation
range of a lane and improves the performance of the model.
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Figure 1: (a) the original picture of frame t � 1 and frame t in same sequence, (b) the two
frames after alignment under BEV, (c) non-coincidence of the vehicle coordinate system and
the road coordinate system due to road bumps.

2 Related Work

2.1 3D Lane Detection

The 2D lane detection methods focus mainly on improving the detection performance on 2D
images. However, the accuracy of lane detection under BEV is more concerned in down-
stream applications, such as the autonomous driving scenario. There are two main ideas to
solve this problem:

Lidar fusion methods [1, 2, 11] integrate the accurate position information of Lidar
and the color information of the camera. These methods achieve a significant improvement,
especially for road edge detection.

Monocular 3D methods [3, 4, 5] transform the image to the road coordinate system
through IPM transformation and predict the position on the road projection plane and the
height of the road surface at the corresponding position simultaneously. Based on 3DLaneNet
[4], GenLaneNet [5] corrects the projection relationship of the 3D lane and decouples the
prediction of position and height into two stages. PersFormer [3] replaces the IPM layer
with a deformable transformer to obtain enhanced BEV features. SALAD [10] predicts the
position of the lane in the image and the corresponding inverse depth directly in the camera
coordinate system. CLGO [9] adopts a 3D extended version of the curve parameter predic-
tion method to predict the curve parameters of a 3D curve directly.

2.2 View-transformation and BEV temporal fusion

There are currently mainly three ways to transform the original image to BEV. The first is to
use the IPM [4] based on the position of the camera related to the road surface. The second
is to directly predict the depth of each point on the original image [6, 10]. The third is to
do the transformation implicitly (e.g. using MLP layers [7] or a deformable transformer [8]),
which inputs the original image and outputs the BEV. The latter two have the problem that
it is difficult to decouple the model from camera intrinsic and extrinsic, so we use the first
transformation method and convert the original image to a virtual BEV plane uniformly.

The multi-frame fusion under BEV [6, 8] has proven its effectiveness in 3D object de-
tection. BEVFormer [8] fuses temporal information by spatial cross-attention and temporal
self-attention, while BEVDet4D [6] stitches among BEV features from adjacent frames by
concatenation operation.
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3 STLane3D

In this section, we first formulate Lane3D Detection task in Sec. 3.1 and then present the
overall pipeline of STLane3D in Sec. 3.2. Subsequently, we introduce our key contributions
in detail, including the pre-alignment operation in Sec. 3.3.1, the spatio-temporal attention
model in Sec. 3.3.2 and the 3DLane IOULoss in Sec. 3.3.3.

3.1 Problem Definition

Let X
m =

⇥
X

1,X2, . . . ,Xt , . . . ,Xm
⇤

represents a video sequence of length m, and X
t de-

notes the t-th frame. We aim to predict a sequence of lanes P
m =

⇥
P

1,P2, . . . ,Pt , . . . ,Pm
⇤
,

where P
t represents the lane positions of the t-th frame in the sequence. For each frame,

P
t =

n
l
0,t , l1,t , . . . , lk,t , . . . , lC

t ,t
o

, where C
t is the number of lanes in t-th frame and l

k,t is
represented as a collection of 3D points as follows.

l
k,t =

h
(xk,t

0 ,yk,t
0 ,zk,t

0 ),(xk,t
1 ,yk,t

1 ,zk,t
1 ), ...,(xk,t

nk
,yk,t

nk
,zk,t

nk
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Figure 2: The camera coordinate system, whose
origin is located at the camera optical center at
time t. 3D lane `k,t represents the k-th lane at time
t, corresponding to c-th BEV anchor with an in-
cline angle jc and a start point x

c
start

.

where k is the index of the lane and nk is
the max number of visible points of the
k-th lane. As shown in Fig. 2, the coor-
dinate system is defined as the camera
coordinate system. The x-axis points to
the right of the camera, the y-axis points
to the front of the camera, and the z-axis
points to the sky.

Due to the sparsity of 3D lanes in
space, there is currently no dense rep-
resentation similar to the 2D lane seg-
mentation task. To keep the output of
each frame with the same shape, we
adopt the 3D lane anchor representation
[3]. The anchors are lateral along x-
axis, with an incline angle j and a start
point xstart. We set 16 start points and 7
incline angles for a total of nanchor = 112
preset anchors. The 3D lane anchor rep-
resentation `k,t for each frame at time t

is represented in Fig. 2.

`k,t =
h
(Dx

k,t
0 ,yk,t

0 ,zk,t
0 ,vis

k,t
0 ), . . . ,(Dx

k,t
i
,yk,t

i
,zk,t

i
,vis

k,t
i
), . . . ,(Dx

k,t
N
,yk,t

N
,zk,t

N
,vis

k,t
N
)
i
, (2)

where Dx
k,t
i

and vis
k,t
i

represent the x offset and visibility of the i-th sampled point of the
k-th lane in the t-th frame, N represents the number of points sampled uniformly along the
y-axis for each anchor. After post-processing, we can obtain the final point set expression
l
k,t . Similar to GenLaneNet [5], We present a position correction based on the analogous

triangle in camera coordinate system in the appendix A.2.
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Figure 3: The overall paradigm of STLane3D. STLane3D is mainly divided into the follow-
ing three main parts: (1) encoder layer, (2) fusion layer, and (3) decoder layer.

3.2 Overview

The overall paradigm of our method is shown in Fig. 3. The pipeline is mainly divided into
three blocks: encoder layer, fusion layer, and decoder layer. It should be noted that the fusion
layer used in multi-frame model is a plug-and-play module, while the single-frame model
only consists of the encoder and decoder layers.

Encoder layer We adopt ResNext-50 combined with RESA block [12] as backbone,
which can capture spatial relationships of pixels across rows and columns. The BEV con-
verter projects the extracted features to the BEV plane through bilinear interpolation. The
encoder is shared at different timestamps and can reduce inference time by saving the feature
map of historical frames to alleviate redundant computation.

Fusion layer We use channel-wise convolution to fuse the information of historical and
current frames. We take the features from history and current frames as key-value pairs,
respectively, and the features from the current frame as the query. We use the ego-motion
from RTK to pre-align the features of the historical frame before fusion, which can ensure the
position correspondence during 1 ⇥ 1 convolution. BEV pre-alignment will be introduced
in detail in Sec. 3.3.1.

Decoder layer We decode the feature by the 3D lane head through a series of convolu-
tions with no padding in the y dimension. It will be finally flattened into the prediction result
of (ws,3⇥hs +ntypes), where ws and hs respectively represent the number of anchors we set
in the width direction of the image and the number of sampled points in the height direction
of the image, ntypes represents the prediction of the lane category. For each preset anchor,
we predict, (1) lateral position offset Dx relative to the anchor, (2) height z relative to the
virtual plane, (3) visibility vis of the sampled point, (4) category type of the lane.

3.3 Model details

3.3.1 BEV pre-alignment

As described in Sec. 1, front-view perspective fusion will bring many difficulties. However,
it also raises two problems when transforming the view from the original image to the BEV.
One is how to cast the original image onto the BEV, and the other is how to align BEV fea-
tures from two frames. It is common practice to do these two steps separately, first projecting
each frame onto BEV and then aligning them [6, 8]. We minimize the conversion error by
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Figure 4: BEV pre-alignment. As shown in (b), the ego vehicle moves from O
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,

and the corresponding pose transformation is R
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t

t�1. The green rectangle ABCD, corre-
sponding to the IPM Plane in (a), represents the BEV ROI of t frame.

combining these two steps into single image feature processing.
By analyzing the process of IPM, the core operation is to find the region of interest (ROI)

layout in the original image. We assume that our ROI (the area enclosed by the four points of
A,B,C,D as shown in Fig. 4) is x2 [xmin,xmax] and y2 [ymin,ymax] under camera coordination
and the our camera is mounted at a virtual height hc. The corresponding points a

t ,bt ,ct ,dt

on the original image are computed according to the pinhole camera model:

(ut ,vt ,1)T = K3⇥4 · (xt ,yt ,zt ,1)T (3)

where u
t ,vt is coordinates in the image plane expressed in pixel units, x

t ,yt ,zt is a 3D point
defined in the camera coordinates system at t frame, K3⇥4 is the camera intrinsic. Then the
area enclosed by a

t ,bt ,ct ,dt on the original image is stretched into the BEV plane in the
shape of (hBEV,wBEV) through bilinear interpolation.

According to the RTK motion information of the ego-vehicle, we can get the camera
pose transformation from t � 1 frame to t frame with R

t

t�1,T
t

t�1. Therefore, we can easily
obtain the coordinates of A,B,C,D in the camera coordinate system of the t �1 frame, using
the pose transformation formula defined as

R
t

t�1 · [xt�1,yt�1,zt�1,1]T+T
t

t�1 = [xt ,yt ,zt ,1]T. (4)

Also according to the pinhole camera model, we can get the image points a
t�1,bt�1,ct�1,dt�1

corresponding to the t �1 frame.

3.3.2 Attention Module

Since we perform the BEV pre-alignment operation before fusion, the features from different
frames has one-to-one correspondence in image locations. We use the features from t � 1
frame as the key, and the features from t frame as the value and query to build a simple
and effective attention module to fuse features from different moments. We fuse the key and
value with simple channel-wise convolutions. We present detailed description of attention
module in the appendix A.1.
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3.3.3 3DLane IOULoss
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Figure 5: 3DLane IOULoss.

LaneIOU Loss is firstly proposed by
CLRNet [13] applied to the Lane2D
task to regress the lane prior as a whole
unit and tailor for Lane2D dataset
evaluation metrics. We introduce the
LaneIOU Loss to Lane3D task and
modified it to better fit the Lane3D task.

3DLane IOULoss extends LaneIOU
Loss from 2D space to 3D space. Com-
pared with L1 Loss, it can maintain the
continuity of lanes more effectively as
it couples the errors in the lateral and height directions. The ground-truth labels (xi,zi), i =
0,1, ...,N at the position of y = yi are obtained by interpolation. As shown in Fig. 5, two rect-
angles with a length of l and a height of h are denoted as the ground-truth result Sgt and the
predicted result Spred . 3DLane IOULoss can be expressed as their intersection-over-union
(IOU):

Lreg =
Sgt

T
Spred

Sgt
S

Spred
. (5)

Besides the Lreg, we use the binary cross-entropy loss Lvis and Lprob follow [5]. For the
input image, the total loss can be expressed as,

Ltot =
nanchor

Â
k

N

Â
i

(a ·Lk

prob +b · p
k ·Li,k

vis + g · p
k ·Li,k

reg), (6)

where p
k represents whether the k-th anchor contains ground-truth lane, nanchor is the number

of anchors, a,b and g are three hyperparameters.

4 Experiments

4.1 Experimental Setting

Dataset. To extensively evaluate the proposed method, we conduct experiments on ONCE
[10] and OpenLane [3]. They are both large-scale autonomous driving datasets with 3D lane
annotations. OpenLane is the first real-world dataset for 3D lane detection and ONCE is the
up-to-date largest real-world dataset for 3D lane detection including 1 million scenes and
211k 3D lane fully annotated scenes.
Metrics. We adopt the evaluation metrics of ONCE [10] on ONCE dataset. The metric
first calculate the matching degree of two lanes on the z-x plane. To be concrete, lane is
represented as L

k =
�
(xk

i
,yk

i
,zk

i
)
 n

i=1. The curve matching error CDp,g between L
p and L

g is
calculated as follows: 8

>><

>>:

CDp,g =
1
m

m

Â
i=1

||Pgi
� P̂p j

||2

P̂p j
= min

Pp j
2Lp

||Ppj
�Pgi

||2
(7)

We use F1-measure as the evaluation metrics on OpenLane dataset.
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4.2 Implementation

Training. Following GenLaneNet [5], we train STLane3D in a two-stage manner to alleviate
unnecessary extra computation. In the first stage, we train the 2D lane model using 2D lane
labels on the ONCE dataset for 50 epochs. In the second stage, we retain the weights of the
previously pre-trained encoding layers and use the 3D lane labels to train single-frame and
multi-frame models for 8 epochs, respectively.

The farthest distance of the annotated lane in the ONCE dataset is 50 meters in front of
the vehicle. And the average forward distance between the two frames is 5 meters. So we
set the distance range of the BEV projection to [-100m, 100m] of the vehicle and sample 72
points at equal intervals to form the anchors. The rectangular window of 3DLane IOULoss
is set to l = 3m, h = 1m. The overall loss weight is set to a = 10,b = 10,g = 1. We use an
Adam optimizer and use a fixed learning rate of 0.0001.
Inference speed. The inference speed is the average upon validation and test splits using
ResNext-50 as the backbone. The inference speed of our single-frame-model is 63 FPS on
a single RTX 3060, and our multi-frame-model is 30 FPS(n f rames = 4) by setting the batch
size to 1.

4.3 Main Results

As shown in Tab. 1, we compare the proposed STLane3D with 3DLaneNet [4], GenLaneNet
[5], SALAD [10] and PersFormer [3]. Compared with the single-frame model, the F1-score
of the multi-frame model increases by 3.5%, and compared with PersFormer, it increases by
3.2%, and achieved the new state-of-art F1-score of 77.53%.

Table 1: Comparison with the state-of-the-art methods on the ONCE dataset.

Methods F1-score(%)" Precision(%)" Recall(%)" CD-error(m)#

3DLaneNet [4] 44.73 61.46 35.16 0.127
GenLaneNet [5] 45.59 63.95 35.42 0.121

SALAD [10] 64.07 75.90 55.42 0.098
PersFormer [3] 72.07 77.82 67.11 0.086

STLane3D-single(ours) 74.05 76.63 71.64 0.085

STLane3D-multi(ours) 77.53 81.54 73.90 0.066

4.4 Ablation Studies and Discussions

We present ablation study results to demonstrate the effectiveness of each component in
STLane3D and further discuss the reasons for the ups and downs of performance.

Effectiveness of the Multi-frame Fusion We investigate the effectiveness of the multi-
frame fusion pre-alignment operation. Detailed ablation results are presented in Fig. 7. The
experimental results show that the accuracy of the model with pre-alignment operation first
increases and then decreases as the number of fused frames increases. The highest accuracy
is achieved when nframes = 4. The accuracy of the model without pre-alignment decreases
gradually as the nframes increase. This suggests that the pre-alignment operation facilitates
the fusion of multiple frames, while introducing too old historical frames can also impact the
model.
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Figure 6: Illustration of an obscured scene.
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Figure 7: Effectiveness of the multi-
frame fusion.

Fig. 6 shows a scene where the lane line is ob-
scured by a vehicle on the left. Part of the lane line
is not visible in current frame due to the occlusion
of the left car, while this lane is observable from
history frames. Thus, we can use the history in-
formation (with multi-frames) to solve cases with
few visual cues and also provide the information
on the lane lines behind the ego car (< 0m), which
helps to improve the accuracy of the close lane po-
sition. Fig. 6 (c), (d), (e) are the results for the
single frame, 4 frames, and 6 frames models, re-
spectively. (a) and (b) show the visualization of the
predicted result (Red) and the label (Green) in the
original and BEV images. The first output channel
of the fusion layer is shown for nframes = 4 and nframes = 6 respectively in (d) and (e), and the
output channel of the encoder layer of the single-frame model is shown in (c).

Effectiveness of the 3DLane IOULoss We investigate the effectiveness of 3DLane
IOULoss, including the comparison of L1 Loss, LaneIOU Loss [13] and 3DLane IOULoss
(ours). Detailed ablation results are presented in Tab. 2.

3DLane IOULoss improves the F1-score by 1.55% and CD-error by 0.005m, compared
with the L1 Loss function, demonstrating the effectiveness of 3DLane IOULoss. At the
same time, we found that during the training process, using the L1 Loss, the loss function is
occasionally infinite. This is due to the lack of an upper limit when using the L1 Loss, and
the upper limit of the IOU-based loss function is 1, so the above problems will not occur.

Table 2: Effectiveness of the 3DLane IOULoss.
Methods F1-score(%)" Precision(%)" Recall(%)" CD-error(m)#

L1 Loss 75.98 76.99 74.99 0.071

LaneIOU Loss 76.85 79.75 74.15 0.068

3DLane IOULoss(ours) 77.53 81.54 73.90 0.066

Experiment results on OpenLane We tested our model on OpenLane as well. Although
the camera intrinsic and extrinsic vary considerably between sequences of OpenLane com-
pared to ONCE, we use the same parameter settings as on ONCE and use a uniform BEV
plane height of 1.5m. Due to the variations in pitch angle (camera mounting) among se-
quences on OpenLane, there is an ROI mismatch in front of the ego car. A similar problem
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exists in the lateral direction as well, which significantly affects the performance of uphill &
downhill and curve cases. Meanwhile, we sampled the frames at 4 frame intervals on Open-
Lane to maintain consistency with ONCE. We achieved close results with state-of-the-art
methods, demonstrating that it is feasible to predict directly in the camera coordinate system
independent of the camera pose. Experimental results show that STLane3D performs well
in scenes without visual cues, such as at night, in extreme weather, etc. Qualitative results
will be illustrated in appendix A.3. The specific experimental results are shown in Tab. 3.

Table 3: Comparison with the state-of-the-art methods on the OpenLane dataset. We report
F1-score for different scenarios and overall F1-score(%), X-error(m) and Z-error(m).

Methods
Up &

Down
Curve

Extreme

Weather
Night

Inter-

section

Merge

& Split

F1-

score

X-

error

Z-

error

3DLaneNet [4] 40.8 46.5 47.5 41.5 32.1 41.7 44.1 0.572 0.443
GenLaneNet [5] 25.4 33.5 28.1 18.7 21.4 31.0 32.3 0.684 0.521
PersFormer [3] 42.4 55.6 48.6 46.6 40.0 50.7 50.5 0.553 0.431

STLane3D(ours) 41.3 47.4 54.0 51.3 42.5 47.9 50.6 0.500 0.178

5 Conclusion

In this paper, to address the lack of temporal information and dependence on camera poses,
which are common problems of existing Lane3D methods, we present a novel, simple and
effective 3D lane detection framework STLane3D by incorporating both spatial and tem-
poral information among frames. We propose a pre-alignment operation, a plug-and-play
spatio-temporal attention module, and a novel 3DLane IOULoss. Experiments on ONCE
and OpenLane demonstrate the effectiveness of the multi-frame fusion strategy. STLane3D
achieves state-of-the-art detection accuracy and performs well in complex scenarios lacking
sufficient visual information.
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