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Background 
Lane detection is a classic yet challenging computer vision task and an intuitive and 
effective way for autonomous vehicles to perceive their surroundings. Traditional 2D 
lane detection methods focus on obtaining the exact lane position on the image. 
However, due to the lack of image depth information, the 2D results are challenging 
to apply to downstream tasks directly. Monocular 3D lane detection methods are 
proposed to solve these issues, which can obtain the lane position from the 3D world 
space in an end-to-end manner without road planar assumption. 
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Figure 1: (a) the original picture of frame t � 1 and frame t in same sequence, (b) the two
frames after alignment under BEV, (c) non-coincidence of the vehicle coordinate system and
the road coordinate system due to road bumps.

2 Related Work

2.1 3D Lane Detection

The 2D lane detection methods focus mainly on improving the detection performance on 2D
images. However, the accuracy of lane detection under BEV is more concerned in down-
stream applications, such as the autonomous driving scenario. There are two main ideas to
solve this problem:

Lidar fusion methods [1, 2, 11] integrate the accurate position information of Lidar
and the color information of the camera. These methods achieve a significant improvement,
especially for road edge detection.

Monocular 3D methods [3, 4, 5] transform the image to the road coordinate system
through IPM transformation and predict the position on the road projection plane and the
height of the road surface at the corresponding position simultaneously. Based on 3DLaneNet
[4], GenLaneNet [5] corrects the projection relationship of the 3D lane and decouples the
prediction of position and height into two stages. PersFormer [3] replaces the IPM layer
with a deformable transformer to obtain enhanced BEV features. SALAD [10] predicts the
position of the lane in the image and the corresponding inverse depth directly in the camera
coordinate system. CLGO [9] adopts a 3D extended version of the curve parameter predic-
tion method to predict the curve parameters of a 3D curve directly.

2.2 View-transformation and BEV temporal fusion

There are currently mainly three ways to transform the original image to BEV. The first is to
use the IPM [4] based on the position of the camera related to the road surface. The second
is to directly predict the depth of each point on the original image [6, 10]. The third is to
do the transformation implicitly (e.g. using MLP layers [7] or a deformable transformer [8]),
which inputs the original image and outputs the BEV. The latter two have the problem that
it is difficult to decouple the model from camera intrinsic and extrinsic, so we use the first
transformation method and convert the original image to a virtual BEV plane uniformly.

The multi-frame fusion under BEV [6, 8] has proven its effectiveness in 3D object de-
tection. BEVFormer [8] fuses temporal information by spatial cross-attention and temporal
self-attention, while BEVDet4D [6] stitches among BEV features from adjacent frames by
concatenation operation.

Motivation & Introduction 
We aim to provide a simple and spatio-temporal fusion-based 3D lane detection 
method abbreviated as STLane3D. 
• We propose a multi-frame fusion 

mechanism by making use of the strong 
spatio-temporal continuity in consecutive 
frames instead of focusing on single frame. 

• We utilize a pre-alignment operation to 
align the space information on the 
different frames. For example, some parts 
of lanes are invisible in frame t - 1 or frame 
t due to the occlusion of surrounding 
vehicles in Fig .1(a). By fusing multiple 
frames, the position information can be 
recognized in Fig .1(b), marked by the 
green circles. 

• We perform 3D lane detection under the 
camera coordinate system. 

Fig 1 (a) the original picture of frame 
t - 1 and frame t in same sequence, 
(b) the two frames after alignment 
under BEV.

Overview 
The overall paradigm of our method is shown in Fig. 2.
• Encoder layer We adopt ResNext-50 combined with RESA 

block as backbone. The BEV converter projects the 
extracted features to the BEV plane through bilinear 
interpolation. The encoder is shared at different 
timestamps to reduce inference time by saving the 
feature map of historical frames. 

• Fusion layer We use channel-wise convolution to fuse the 
information of historical and current frames as key-value 
pairs . We use the ego-motion from RTK to pre-align the 
features of the historical frame before BEV pre-alignment. 

• Decoder layer We decode the feature by the 3D lane head 
through a series of convolutions with no padding in the y 
dimension. For each preset anchor, we predict, (1) lateral 
position offset dx relative to the anchor, (2) height z 
relative to the virtual plane, (3) visibility vis of the sampled 
point, (4) category type of the lane. 

Fig 2 The overall paradigm of STLane3D. 

Results 
As shown in Tab. 1, we compare the proposed STLane3D 
with 3DLaneNet, GenLaneNet, SALAD and PersFormer. 
and achieved the new state-of-art F1-score of 77.53%. 
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4.2 Implementation

Training. Following GenLaneNet [5], we train STLane3D in a two-stage manner to alleviate
unnecessary extra computation. In the first stage, we train the 2D lane model using 2D lane
labels on the ONCE dataset for 50 epochs. In the second stage, we retain the weights of the
previously pre-trained encoding layers and use the 3D lane labels to train single-frame and
multi-frame models for 8 epochs, respectively.

The farthest distance of the annotated lane in the ONCE dataset is 50 meters in front of
the vehicle. And the average forward distance between the two frames is 5 meters. So we
set the distance range of the BEV projection to [-100m, 100m] of the vehicle and sample 72
points at equal intervals to form the anchors. The rectangular window of 3DLane IOULoss
is set to l = 3m, h = 1m. The overall loss weight is set to a = 10,b = 10,g = 1. We use an
Adam optimizer and use a fixed learning rate of 0.0001.
Inference speed. The inference speed is the average upon validation and test splits using
ResNext-50 as the backbone. The inference speed of our single-frame-model is 63 FPS on
a single RTX 3060, and our multi-frame-model is 30 FPS(n f rames = 4) by setting the batch
size to 1.

4.3 Main Results

As shown in Tab. 1, we compare the proposed STLane3D with 3DLaneNet [4], GenLaneNet
[5], SALAD [10] and PersFormer [3]. Compared with the single-frame model, the F1-score
of the multi-frame model increases by 3.5%, and compared with PersFormer, it increases by
3.2%, and achieved the new state-of-art F1-score of 77.53%.

Table 1: Comparison with the state-of-the-art methods on the ONCE dataset.

Methods F1-score(%)" Precision(%)" Recall(%)" CD-error(m)#

3DLaneNet [4] 44.73 61.46 35.16 0.127
GenLaneNet [5] 45.59 63.95 35.42 0.121

SALAD [10] 64.07 75.90 55.42 0.098
PersFormer [3] 74.33 80.30 69.18 0.074

STLane3D-single(ours) 74.05 76.63 71.64 0.085

STLane3D-multi(ours) 77.53 81.54 73.90 0.066

4.4 Ablation Studies and Discussions

We present ablation study results to demonstrate the effectiveness of each component in
STLane3D and further discuss the reasons for the ups and downs of performance.

Effectiveness of the Multi-frame Fusion We investigate the effectiveness of the multi-
frame fusion pre-alignment operation. Detailed ablation results are presented in Fig. 7. The
experimental results show that the accuracy of the model with pre-alignment operation first
increases and then decreases as the number of fused frames increases. The highest accuracy
is achieved when nframes = 4. The accuracy of the model without pre-alignment decreases
gradually as the nframes increase. This suggests that the pre-alignment operation facilitates
the fusion of multiple frames, while introducing too old historical frames can also impact the
model.

Tab 1 Comparison with the state-of-the-art methods. 

Fig 3 Illustration of an obscured scene. 

Fig. 3 shows a scene where the lane line is obscured by 
a vehicle on the left. Part of the lane line is not visible in 
current frame due to the occlusion of the left car, while 
this lane is observable from history frames.
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