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Abstract

Nowadays CNN pipelines often downsize input images to a fixed size to use batch
normalization efficiently. For the mostly used downsizing method by bilinear interpola-
tion, information loss may occur since only the relative distance is considered to compute
the interpolation coefficients. To preserve more image information, we propose a simple
yet efficient interpolation method DownsizeNet, which extracts and fuses local texture
information into interpolation by a modified CNN network. Specifically, it encodes the
relative distance by a map and aligns it spatially with CNN texture features by our spe-
cially designed floating type pooling. The DownsizeNet allows end-to-end training by
following CNN task and can be embedded in various CNN networks seamlessly with
little extra cost. Experimental results on seven architectures of two tasks, including four
object detection pipelines and three classical segmentation pipelines and on four datasets
(Pascal VOC2007, MS COCO, Pascal VOC2012 Segmentation and Cityscapes) demon-
strate that our method consistently reduces accuracy drop than using bilinear interpola-
tion. Further, we also demonstrate that our interpolation module can generalize well to
different pipelines without re-training.

1 Introduction
Convolutional neural networks (CNNs) are widely used today in various vision tasks such as
classification [14, 34], detection [7, 13, 31, 33, 35, 49] and segmentation [18, 21, 41, 50].
To make full use of GPU in CNN model processing and to use batch normalization, images
of various resolutions are usually resized to the same resolution in the pipeline with most-
ly used bilinear interpolation. As higher resolution image tends to obtain higher accuracy
by preserving more image information, some models resize the image to higher resolution
[6, 33, 48]. However, the computational load greatly increases for high resolution. Thus,
low resolution image is still preferred in many conditions, especially in speed and memory
demanding applications. We analyse that the interpolation in many methods only consider
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Figure 1: The image downsizing with the proposed DownsizeNet (fractional resizing ra-
tio). The figure shows the process of the model with bilinear interpolation and DownsizeNet
interpolation respectively. The image is downsized from 300×300 to 160×160 in this fig-
ure. The DownsizeNet is supervised by following CNN tasks which forms an end-to-end
trainable network.

relative distance in inferring the interpolation coefficients [4, 15, 16, 47]. This causes the
information loss in image downsizing. In contrast, if the texture is considered in inferring the
interpolation coefficients, more texture details or more image information may be preserved.
There are some methods which use semantic feature to infer the filter coefficients in fea-
ture map downsizing. Zou et al. [52] propose to learn image feature adaptive filter kernels
for feature map blurring with a sub-network before max-pooling, and they obtain consistent
improvements on several tasks. However, the method [52] only considers the feature map
semantic information in inferring the filter kernels. Besides, it is not an interpolation method
and cannot deal with arbitrary downsizing scales conditions as in Figure 1.

To solve the image information loss problem, we propose a simple yet efficient inter-
polation method DownsizeNet which performs interpolation with a CNN sub-network to
downsize image at the image pre-processing stage (Figure 1). To our best knowledge, we are
the first to introduce texture feature into CNN based interpolation coefficient inference pro-
cess. A special floating type pooling layer is designed to spatially align the extracted CNN
texture feature and the encoded relative distance map. Our interpolation method can retain
the pixel position information and also adapt to the local texture variation. Besides, com-
pared to [52] and traditional convolution network, our method can tackle arbitrary resolution
scale resizing effectively with the specifically designed pooling layer.

In another part, our model has good generalization ability. This enables the DownsizeNet
module to be trained on one task and used on another task directly with fixed weights in
interpolation sub-network. In many conditions, for fast implementation with fewer training
epochs or when the training set is small, the pre-trained backbone weights, e.g. VGG16
[34], are fixed and only the regression or classification head sub-network is trained. In this
condition, the input to the backbone is required to be an image to use the pretrained model,
and our proposed DownsizeNet can meet this requirement by keeping the interpolation result
being still an image.

Our contributions can be summarized as follows.

• We propose a new interpolation method DownsizeNet aiming to preserve image in-
formation in image downsizing with a sub-network interpolation module at the image
pre-processing stage. The interpolation sub-network can be easily used in various vi-
sion tasks, and has good generalization ability to different pipelines by making the
downsizing result retain a real image.

• We introduce texture feature into CNN based interpolation coefficient inference. A
special floating type pooling layer is designed to spatially align the CNN texture fea-
ture and the encoded relative distance map, and this facilitates the pixel-wise interpo-
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lation coefficient inference.
• Experiments on seven pipelines in detection and segmentation tasks demonstrate that

our method consistently reduces accuracy drop than widely used bilinear interpolation.
Besides, we have demonstrated that our method also outperforms texture only based
interpolation, bicubic interpolation and area interpolation.

2 Related work
Image and feature map resizing. Image resizing is a widely used image processing oper-
ation. Traditional methods include bilinear interpolation, bicubic interpolation, etc. These
methods only consider the relative distances between the projected pixel and its neighbor
pixels while the local texture variation is omitted. In the era of deep learning, the traditional
interpolation methods are still widely used in image pre-processing [26, 32] to warp random
size images to the same size for batch processing [11, 12, 38]. In the CNN architecture, to
reduce the feature map size for speed acceleration, max pooling, average pooling and convo-
lution with larger than 1 integer stride are used. However, they cannot resize the feature map
into arbitrary resolution scale for batch processing while our method can. Some researchers
find that it is useful to blur the feature map with filters before down-sampling [47, 52]. How-
ever, they cannot deal with fractional ratio resizing either. In Meta-SR [16], only the relative
distance and scale information are encoded with sub-network for convolution filter infer-
ence, while in fact we can also define the relative distance vector with sub-network. Talebi
and Milanfar [37] perform traditional bilinear interpolation on extracted convolution feature
maps to achieve arbitrary resolution scale resizing. However, the obtained image is not a
real-like image and thus their model cannot generalize to other pipelines without retraining
as ours. Besides, the bilinear interpolation in their network can be replaced by our interpo-
lation module. In [17, 30], they perform non-uniform downsampling while no interpolation
is used and more image information may lose compared with interpolation based methods.

Super resolution & up-scaling. As it is noticed that high resolution images tend to
obtain higher accuracy in CNNs or have higher visual clarity, many researchers upscale the
image resolution [20, 46]. Dong et al. [8] first upscale the low resolution image with cubic
interpolation, and then perform convolution on the new image to obtain super resolution im-
age. In [9], the researchers remove the cubic interpolation operation and use deconvolution
to upscale the feature map. In some computer vision tasks, upscaling is also widely used,
for example in semantic segmentation [29, 42]. Liu et al. [24] performs feature map upscal-
ing with a holistically-guided decoder. Some semantic segmentation methods use bilinear
interpolation to upscale feature map to original image size to obtain final segmentation re-
sult [4, 15]. Different from the upscaling methods, our method focuses on the information
preservation during image downsizing at the image pre-processing stage. Some method-
s [19, 36, 45] first downscale the image and then upscale the low resolution image for image
restoring. They use the difference between restored image and original image as guidance to
train the downscaling and upscaling network, and are not designed to optimize various other
vision tasks such as detection and segmentation as ours.

Coordinate operation. Pixel coordinate is useful information for denoting the position
of image element (e.g. edge), especially in position-sensitive tasks such as detection and
segmentation. Liu et al. [25] proposes coordinate convolution which embeds the row and
column positions of pixels in the convolution operation. AWing [43] finds that the coordi-
nate convolution is effective to encode the spatial relationship between facial landmarks on
detected face image patch. Transformer also utilizes the pixel or patch position information
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Figure 2: The flowchart of the proposed DownsizeNet interpolation model. The relative
distance map and the interpolation coefficient map are both pixel-wise. After obtaining the
interpolation coefficients (also normalized with sum to 1), the interpolation on four neighbor
pixels is performed. The gradient flowing for back propagation is shown as the blue dash
line. The relative distance of the projected pixel (blue point) is shown on the top left.

[40]. By embedding the position of patches, the patches can retain the spatial information in
the Transformer process [2, 10, 27, 28, 39]. In our method, the relative distance between pro-
jected pixel and its neighbor pixels is important to denote the fine object boundary position,
and thus this position information is encoded in our method.

3 System formulation
Our aim is to provide a fast and effective CNN based interpolation method for image down-
sizing to replace the hand-crafted bilinear interpolation widely used in CNN pipelines at the
image preprocessing stage. There can be other methods to preserve the information in im-
age downsizing, e.g. auto-encoder [44]. However, auto encoder cannot deal with arbitrary
downsizing scale as our method. Besides, our model is easy to be implemented and has good
generalization ability by retaining the downsized result being still an image.

Learning for image downsizing
The proposed interpolation network structure is as shown in Figure 2. We first infer the

spatially different interpolation coefficients with a sub-network, and then perform interpo-
lation with these coefficients. The obtained low resolution image is used in the following
CNN task. For a specific point Q on the low resolution image, given the pixel intensity
qi, i = 1, ...,4 and interpolation coefficients ai, i = 1, ...,4 of its four corresponding neighbor
pixels on the high resolution image, its pixel intensity is defined as:

q̃ = [q1, ...,q4][a1, ...,a4]
T .

s.t. ∑i ai = 1
0 ≤ ai ≤ 1.

(1)

Note that the interpolation coefficients are different for different pixels.
The main part of the proposed DownsizeNet is the interpolation coefficient inference

sub-network. Different from previous interpolation methods which only use the relative dis-
tance between projected pixel and its neighbors [4, 15], we also introduce the texture feature
into the coefficient inference process. In this way, the interpolation coefficient can reflect the
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texture variation. Here, the texture feature for each pixel is extracted by performing convo-
lutions on image patch. As in Figure 2, in this coefficient inference sub-network, we first
extract feature map from the high resolution image with 2 ∼ 4 convolution layers with 3×3
kernels, and then concatenate it with the relative distance map, and then make the new feature
map pass a 1× 1 convolution layer and a sigmoid layer. In this way, the pixel-wise fusion
of CNN texture and the relative distance is obtained. Then, we can obtain the interpolation
coefficient map where sum to 1 constraint is used before interpolation. With sigmoid and
sum to 1 normalization, the constraint in Equation (1) is fulfilled 1. The constraint guaran-
tees that the resized output is still an image. As pre-trained backbone models, e.g. VGG16,
are trained on images, this constraint guarantees that the pre-trained backbone models can
be fixed for feature extraction to reduce the training time.

Our network is easy to implement. Asides from the traditional convolution and sigmoid
layer, there is one special floating point pooling layer to align spatially the texture feature
map and the relative distance map. For this layer, for each pixel Q on the low resolution
feature map, we project it to the high resolution feature map. Given P as the top left pixel of
the four neighbor pixels of the projected pixel, we select the feature vector at P as the feature
vector of Q. That is, only selection operation is needed in the special pooling layer. This
selected feature vector contains the local context information due to the receptive field of the
convolution operation.

There can be various ways to define the relative distance map according to the offset
dx and dy which represent the offset between the projected pixel and the top left pixel on
the high resolution image (top right of Figure 2). That is, the relative distance vector can be
defined as v = [ f1(dx,dy), f2(dx,dy), ..., fK(dx,dy)] for a specific pixel on the low resolution
image where K is the channel number. The h×w relative distance vectors construct the
relative distance map, where h and w are the height and width of the low resolution image
respectively. The bilinear interpolation can be considered as a special case of our method.
In this condition, we define the coefficient inference sub-network as follows. We define
v = [(1−dx)(1−dy),dx(1−dy),(1−dx)dy,dxdy]. And define the 1×1 convolution filters
as gk = [0, ...,0,1,0, ...,0],k = 1, ...,4, where only the (C+ k)− th element is 1 for gk and
C is the channel number of the feature map before pooling. The last sigmoid is removed.
Then, our method becomes bilinear interpolation.

Training the network
The downsized image can be used for various following CNN tasks such as detection

and segmentation. The loss function of DownsizeNet module is the same as the loss function
of the following tasks. When having obtained the gradients of the interpolated image, the
gradient is back-propagated to the interpolation coefficient inference module. In this way,
we obtain an end-to-end trainable system.

4 Implementation details
We have tested our method on Linux OS and on GPUs. We tested our method on seven
pipelines, including four visual detection models and three semantic segmentation models.
Four datasets, i.e. Pascal VOC 2007 [1], MS COCO [23], Pascal VOC 2012 Segmenta-
tion [1] and CityScapes [5], are tested in our experiment. We compared our method mainly
with bilinear interpolation method (denoted as Bilinear). Bicubic interpolation, Area in-
terpolation and texture-only based interpolation are also compared. The same number of
neighbor pixels are used for our method and compared methods. As for the limited and
busy GPU resources, the experiments are done on different GPUs. But for fair comparison,

1The last sigmoid in the coefficient inference subnetwork can be replaced by softmax, then the sum to 1 operation
is not needed in the following interpolation operation any more.
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Table 1: The performance (mAP) comparison between Bilinear and ours on four detec-
tion pipelines. RefineDet is implemented with Caffe, and other networks are implemented
with PyTorch. ∼ 300 denotes that one side of the image is resized to 300 while the height
and width ratio is fixed.

Pipeline Attribute Dataset Backbone Resolution Bilinear Ours

RefineDet [48] One-stage VOC2007 VGG16 300×300−>160×160 68.0 68.9
CenterNet [51] Anchor-Free VOC2007 ResDCN18 300×300−>160×160 41.0 41.9

DETR [3] Transformer COCO ResNet101 300×300−>165×165 16.1 16.3
LightHead [22] Two-stage VOC2007 VGG16 ∼ 300−>∼ 165 50.0 50.5

we guarantee that for the same pipeline our method and compared methods are performed
on the same GPU settings including GPU numbers and types. And all other program set-
tings are the same for our method and compared methods except for the operations spe-
cific for the proposed downsizing module. Similar to our method, the compared methods
also retain floating type low resolution image. Three convolution layers are used before
pooling in the coefficient inference sub-network if not specifically pointed out. Each of
the 3 × 3 convolution layers has 16 channels. The relative distance vector is defined as
v = [(1− dx)(1− dy),dx(1− dy),(1− dx)dy,dxdy]. More implementation details are pre-
sented in the supplementary material.

5 Experimental results
5.1 Experiments on detection models
We test the validity of our method on four detection models, i.e., RefineDet2 [48], CenterNet3

[51], LightHead4 [22] and DETR5 [3]. The four pipelines represent the four widely used
detection strategies. From Table 1, we can see that our method consistently outperforms Bi-
linear by 0.2%∼0.9% mAP. The object detection is sensitive to pixel position. Our method
involves relative distance into the interpolation coefficient inference, and then the spatial
information can be retained. Besides, our method can adapt to the local image texture vari-
ation. And then, our method obtains better results than bilinear interpolation as the table
shows. For all the four pipelines, the images are first resized to ∼ 300 resolution with bi-
linear, and then resized to ∼ 160 resolution with DownsizeNet or bilinear interpolation. In
another part, as smaller resolution images tend to have lower performance [26, 48] and the
image resolution is smaller than the original paper, for example DETR uses larger than ∼ 800
resolution while it is 165×165 here, the performance here is lower than the official reports.
All the codes and settings used have been given in the paper. More details are presented in
the supplementary material.

Besides, we also tested Bicubic interpolation, Area interpolation and DownsizeNet on
RefineDet and VOC2007, and obtained 57.1%, 58.9% and 59.4% mAP respectively. We
are 2.3% and 0.5% higher. The resolution is reduced from 300× 300 to 100× 100. We
redesigned the relative distance vector using bicubic coefficients and use 4 × 4 neighbor
pixels. In this condition, we have even larger advantage. As more neighbor pixels contain
more semantic information, it is more suitable for DownsizeNet. Besides, Bicubic and Area
can also be considered as special cases of our method by carefully defining the relative

2https://github.com/sfzhang15/RefineDet
3https://github.com/zzzxxxttt/pytorch_simple_CenterNet_45
4https://github.com/leowangzi/LightHeadRCNN
5https://github.com/facebookresearch/detr
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Table 2: The performance (mean IoU) comparison between Bilinear and ours on three
segmentation pipelines. FCN is implemented with Caffe, and other networks are imple-
mented with PyTorch. SPP: Spatial Pyramid Pooling. For DeepLabv3+, the image is resized
to 0.35 times of the original resolution. For SPNet, the image is resized to 0.3 times of the
high resolution. The resolutions 513 and 768 are used in the original codes of DeepLabv3+
and SPNet respectively.

Pipeline Attribute Dataset Backbone Resolution Bilinear Ours

FCN [29] Fully convolution VOC2012Seg VGG16 Random−>100×100 25.8 26.3
DeepLabv3+ [4] SPP, encode-decode Cityscapes Resnet101 513×513−>179×179 46.4 47.3

SPNet [15] Strip pooling Cityscapes Resnet50 768×768−>230×230 58.6 59.2

Table 3: Test on LightHead about the generalization ability of the pretrained Down-
sizeNet model on Pascal VOC2007 (mAP metric). The interpolation sub-network is pre-
trained on DeepLabv3+ for 100, 200 and 300 epochs separately. The LightHead is re-trained
with 10 epochs. The image is resized to 0.3 times of the high image resolution for both
LightHead and DeepLabv3+.

Training epochs on DeepLabv3+ Bilinear Ours

100 34.7 34.8
200 34.7 35.1
300 34.7 35.2

distance vector accordingly.

5.2 Experiments on segmentation models
In this part, we test the validity of our method on three classical semantic segmentation
models, i.e., FCN6 [29], DeepLabv3+7 [4] and SPNet8 [15]. From Table 2, we can see
that our method consistently outperforms Bilinear on the three pipelines by 0.5%∼0.9%. In
our experiment, we find that with the original FCN code, the performance of our method
is slightly lower than Bilinear. We analyze that it is because the sample number of VOC
2012 segmentation is not large and we have found no data augmentation in the source code.
The data augmentation is important for our method to cover more texture variations. Thus,
we augment the training samples by adding random cropping (detailed in supplementary
material). With this, our method obtains better results than FCN. In another part, we find
that the source code only uses 100K iterations while the performance still goes up after that.
Thus, we set the max iteration steps as 400K for FCN. Similar to object detection, semantic
segmentation is also position sensitive. Our method can retain the pixel position information
effectively. And with the optimized fusion of relative distance map and CNN texture feature
by sub-network, our method obtains better results on all the three pipelines.

5.3 Generalization ability of DownsizeNet
We also make an experiment to test the generalization ability of our DownsizeNet model. In
the downsizing process, we keep the new image as a real image by only inferring the inter-
polation coefficient values. Then, the DownsizeNet model trained in one task can be used in
other tasks. In contrast, the downsizing method using convolution with larger than 1 stride
cannot generalize well to other pipelines (more details are in the supplementary material).

6https://github.com/shelhamer/fcn.berkeleyvision.org
7https://github.com/jfzhang95/pytorch-deeplab-xception
8https://github.com/Andrew-Qibin/SPNet
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Table 4: Testing influences of different convolution layer numbers. The test is made using
RefineDet on Pascal VOC2007 dataset.

Layer number 1 2 3 4 5 Bilinear

mAP 68.3 68.7 68.9 68.6 68.0 68.0

To validate the generalization ability of our method, we train the DownsizeNet on DeepLab-
v3+ [4] (segmentation), and then use this trained DownsizeNet model on LightHead [22]
(detection). On LightHead, we keep the weights of the pretrained Downsizing module and
the VGG backbone fixed, and only train the rest part of the network. The image is resized
from 300×300 to 150×150. We find that the mAP of LightHead is relatively steady after
training for 10 epochs, thus we only tested the performance of the methods at epoch 10 in
this test. Also, in this condition we test the generalization of the downsizing module when
using only a few epochs training for new tasks for fast implementation. With the same set-
tings as ours, we also train LightHead for 10 epochs with Bilinear, and obtain 46.4% mAP
which is smaller than ours (46.5% mAP).

In Table 3, we also compare Bilinear and ours when pretraining the downsizing modules
with different epochs in DeepLabv3+. The image is resized to 0.3 times of the high resolu-
tion in Table 3. From Table 3, we can see that when pretraining the proposed DownsizeNet
using 100, 200 and 300 epochs, the performance on LightHead varies. When using more
training epochs, we can see we have larger advantage than Bilinear. As there are random
data augmentation in DeepLabv3+, more training epochs can be considered as more train-
ing samples of various textures are involved in training. In this way, the model can cover
more image texture variations, and then larger advantage is obtained. In another part, our
model has better generalization ability on smaller downsizing scale (e.g. ×0.3), where our
model can preserve more information than Bilinear due to the context information stored in
the interpolation coefficient. We also make a generalization test where we first pretrain the
downsizing module on LightHead and then use it on DeepLabv3+. But we find that the per-
formance is not as good as bilinear interpolation. We analyse that it is because DeepLabv3+
can be considered as a classification task and LightHead a regression task (though the bound-
ing box class needs classification), and classification model can extract more discriminative
feature which has better generalization ability (such as VGG16 pretrained on classification
task [34]).

5.4 Ablation study
To investigate the influences of different hyper-parameter settings of the DownsizeNet mod-
ule, we perform a number of ablation studies based on the detection and segmentation
pipelines.

Influences of different convolution layer numbers. We test the influences of different
convolution layer numbers on RefineDet [48]. Here, we test using 1 ∼ 5 convolution layers
before pooling layer in DownsizeNet module. From Table 4, we see that along with the
increasing of convolution layer number, the performance of our method first increases and
then decreases. The best performance is obtained when the convolution number is 3. More
convolution layers represent more nonlinearity and larger receptive field. Thus, from using
1 convolution layer to using 3 convolution layers, the mAP of our method gradually increas-
es. However, when the convolution layer number goes on increasing, the mAP decreases
gradually. We analyze that it is because when only considering four neighbor pixels, the
DownsizeNet module is easier to meet over-fitting when using more convolution layers.

Validity of using relative distance. We test the validity of using relative distance on
RefineDet [48]. Texture represents our method not using relative distance information in
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Table 5: Testing using relative distance (mAP metric). The test is made using RefineDet
on Pascal VOC2007 dataset. Four convolution layers are used.

Bilinear Texture Ours

68.0 67.7 68.6

Table 6: Testing influences of downsizing scale on FCN, DeepLabv3+ and RefineDe-
t. VOC2012Seg, Cityscapes and VOC2007 datasets are used respectively. ×0.55 denotes
resizing the size to 0.55 times of the high resolution image. ×0.45 and ×0.35 are similar.

FCN (mIoU) DeepLabv3+ (mIoU) RefineDet (mAP)
320×320 160×160 100×100 ×0.55 ×0.45 ×0.35 160×160 130×130 100×100

Bilinear 55.3 45.3 25.8 55.2 51.9 46.4 68.0 64.2 57.7
Ours 55.3 45.5 26.3 55.3 52.5 47.3 68.9 64.7 58.8

computing the interpolation coefficients. From Table 5, we can see that without relative
distance, Texture obtains lower performance than ours, and also lower result than Bilinear.
Relative distance represents where the projected pixel stays on the high resolution image.
For tasks sensitive to pixel positions e.g. visual detection, the pixel position information can
be retained with the relative distance information. Thus, the performance drops when only
using texture feature information. In contrast, by involving both the two factors, our model
obtains the best performance.

Influences of downsizing scale. We test the influences of downsizing scale on FCN [29]
(segmentation), DeepLabv3+ [4] (segmentation) and RefineDet [48] (detection) (Table 6).
For FCN, we resize the image from original size to 320×320, 160×160 and 100×100 re-
spectively. We see that the performance drops for both Bilinear and ours. But compared
with Bilinear, our method can still preserve more image information and thus obtains better
(or the same) results on all the three image resolutions. In another part, from 320×320 to
100×100, our method outperforms Bilinear by 0%, 0.2%, and 0.5% respectively. From this,
we can see that when downsizing the image to smaller images, the image information loss is
lager while our method can have larger advantage. In Table 6, we can see that DeepLabv3+
has similar result as FCN. For ×0.55, ×0.45 and ×0.35, our method outperforms Bilinear by
0.1%, 0.6% and 0.9% respectively on DeepLabv3+ pipeline. We have also tested our method
on one visual detection model RefineDet. The image is first resized to 300×300, and then
resized to 160×160, 130×130 and 100×100 respectively. We can see that on all the three
downsizing scales our method outperforms Bilinear. When the image resolution decreas-
es, the performance on both Bilinear and ours drops. But our method can have relatively
smaller performance drops especially when the image is resized to very small resolution,
e.g. 100×100. When downsizing to much smaller resolution, e.g. below ×0.3, the im-
age information loss is relatively much larger as only four neighbor pixels are considered
during interpolation. However, with optimized interpolation coefficients which have larger
receptive field, our method can preserve more context information and then obtains larger
advantage.

5.5 Time costs

We also show the time cost of our method and Bilinear on RefineDet [48]. The proposed
DownsizeNet only uses 2∼ 4 convolution layers each of which has 16 channels in this paper.
The computational load is small compared with the following CNN architecture (the CNN
layers after DownsizeNet). With the setting as in Table 1 and using 1 K80 GPU, bilinear
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interpolation needs 31.4 ms/image, while ours need 34.2 ms/image, 35.2 ms/image and 37.6
ms/image with 2, 3 and 4 convolution layers respectively. We see that when using 2 convolu-
tion layers, our method and Bilinear needs approximate time while our method outperforms
Bilinear by 0.7% mAP. Thus, we can have relatively large performance improvement with
little extra time cost.

6 Conclusion and discussion
Conclusion. In this paper, we propose an interpolation method DownsizeNet which aims to
preserve image information in image downsizing at the image pre-processing stage. Besides
the relative distance, we also introduce the texture feature information into inferring the
interpolation coefficient with the sub-network. Our method can achieve consistent perfor-
mance improvement than bilinear interpolation while retaining high speed with a few extra
convolution layers. Besides, our method has good generalization ability to other pipelines
which facilitates the training process on new tasks. However, downsizing the image while
retaining high performance is still a challenging task. We wish our work could have some
inspirations for more effort to find more effective image information preservation method.

Discussion. The DownsizeNet proposed in this paper has the potential to act as a basic
module in image resizing process, specifically for image downsizing as in this paper. Also,
this proposed module can also be used as an interpolation method in feature map downsizing
(or upscaling) and ROI pooling. By introducing the semantic information into inferring the
interpolation coefficients, we can expect better performance than only using relative distance.
But we mainly focus on the image pre-processing in this paper, and we will make more
research about the feature map downsizing in the future.
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